MANUAL PENTRU CLASA A V-A

Adrian Niță Carmen Popescu Diana Nicoleta Chirilă Maria Niță

MINISTERUL EDUCATIEI NATIONALE

INFORMATICĂ ȘI TIC

MANUAL PENTRU CLASA A V-A

Adrian Niță Carmen Popescu Diana Nicoleta Chirilă Maria Niță

MINISTERUL EDUCAȚIEI NAȚIONALE

INFORMATICĂ ȘI TIC

Acest manual este proprietatea Ministerului Educației Naționale.

Manualul școlar a fost aprobat prin Ordinul ministrului educației naționale nr. 4866/06.09.2017, în urma evaluării, și este realizat în conformitate cu programa școlară aprobată prin OM nr. 3393 din 28.02.2017.

Manualul este distribuit elevilor în mod gratuit, atât în format tipărit, cât și în format digital, și este transmisibil timp de patru ani școlari, începând cu anul școlar 2017–2018.

Inspectoratul școlar Scoala / Colegiul / Liceul

ACEST MANUAL A FOST FOLOSIT:

				Aspectul manualului*					
Anul	Numele elevului	Clasa	Clasa	Anul școlar	asa Anul școlar	format tipărit		format digital	
				la primire	la predare	la primire	la predare		
1									
2									
3									
4									

*Pentru precizarea aspectului manualului se va folosi unul dintre următorii termeni: **nou**, **bun**, **îngrijit**, **neîngrijit**, **deteriorat**.

• Cadrele didactice vor verifica dacă informațiile înscrise în tabelul de mai sus sunt corecte.

• Elevii nu vor face niciun fel de însemnări pe manual.

116.111 - numărul de telefon european de asistență pentru copii

Date despre autori

Adrian NIȚĂ – profesor gradul didactic I, Colegiul Național "Emanuil Gojdu" din Oradea, instructor în cadrul Academiei CISCO și a Academiei Microsoft, formator.

Carmen POPESCU – profesor gradul didactic I, Colegiul Național "Gheorghe Lazăr" din Sibiu, instructor Oracle Academy, formator, inițiatoarea proiectului LegoFun.

Diana Nicoleta CHIRILĂ – profesor gradul didactic I, Școala Gimnazială "Regina Maria" și Colegiul Național "Octavian Goga" din Sibiu, inițiatoarea Concursului Național "Dual PC", instructor ECDL, formator.

Maria NIȚĂ – profesor gradul didactic I, Colegiul Național "Emanuil Gojdu" din Oradea, instructor în cadrul Academiei CISCO și a Academiei Microsoft, formator.

Referenți:

Ph. D. Neamțu Iosif Mircea, Facultatea de Științe, Universitatea "Lucian Blaga" din Sibiu

Prof. Boca Alina-Gabriela, gradul didactic I, Colegiul Național "Ion Neculce" din București

Prof. Crăciunescu Georgeta Antonia Rodica, gradul didactic I, Colegiul Național "Elena Cuza" din București

Redactare: **Corina Toader** Corector: **Laura Zotică** Tehnoredactare: **Liviu Rusu** Design coperta: **Dan Mihalache** Credite foto: shutterstock.com Descrierea CIP a Bibliotecii Naționale a României

Informatică și TIC : manual pentru clasa a V-a / Adrian Niță, Carmen Popescu, Diana Nicoleta Chirilă, Maria Niță. -București: Corint Logistic, 2017 ISBN 978-606-94044-6-1 I. Niță, Adrian II. Popescu, Carmen III. Chirilă, Diana Nicoleta IV. Niță, Maria 004

ISBN 978-606-94044-6-1

Toate drepturile asupra acestei lucrări sunt rezervate EDITURII CORINT LOGISTIC, parte componentă a GRUPULUI EDITORIAL CORINT.

Pentru comenzi și informații, contactați: **GRUPUL EDITORIAL CORINT Departamentul de Vânzări** Str. Mihai Eminescu nr. 54A, sector 1, București, cod poștal 010517. Tel./Fax: 021.319.47.97; 021.319.48.20 **Depozit** Calea Plevnei nr. 145, sector 6, București, cod poștal 060012. Tel.: 021.310.15.30 E-mail: vanzari@edituracorint.ro Magazin virtual: www.edituracorint.ro

CUPRINS

Competențe generale și specifice	5
Ghid de utilizare a manualului	6

TEHNOLOGIA INFORMAȚIEI ȘI COMUNICAȚIEI

Norme de ergonomie și de siguranță

Normele de securitate și protecție a muncii în laboratorul de Informatică	8
Poziția corectă a corpului la stația de lucru	10
Aplicații. Mini proiect	11

iour

Tipuri de sisteme de calcul și de comunicații

Momente principale în evolutia sistemelor de calcul	12
Sisteme de calcul si de comunicatii întâlnite în viata cotidiană	14
Aplicatii. Mini projecte	. 15

Elemente de arhitectură ale unui sistem de calcul

Structura generală a unui sistem de calcul	16
Rolul componentelor hardware ale unui sistem de calcul	18
Aplicații	19

122

Tipuri de dispozitive

Dispozitive periferice	
Dispozitive de stocare a datelor	
Aplicatii, Mini project	

Sisteme de operare

100,100,1

Rolul unui sistem de operare	
Test de evaluare	
Elemente de interfată ale unui sistem de operare	
Aplicatii	
Test de evaluare	
Organizarea datelor pe suport extern	38
Aplicații	39
Operații cu fișiere și directoare	40
Aplicații	41
Test de evaluare	41

Internet

Avantaiele lucrului în retea	. 42
Tipuri de retele de calculatoare	. 42
Servicii în Internet	. 43
Reguli de comportare pe Internet	. 45
Drepturi de autor	. 45
Aplicatii	. 46
Test de evaluare	. 46

Editoare grafice

Paint	50
Aplicații. Mini proiect	54

INFORMATICĂ

Algoritmi

Notiunea de algoritm. Proprietăți ale algoritmilor	
Aplicatii	57
Descrierea algoritmilor. Date cu care lucrează algoritmii	58
Expresii	60
Aplicatii	63
Test de evaluare	65

Structura secvențială și structura alternativă

8-2	Structura secvențială (liniară)	66
C. 0	Aplicații	67
	Śtructura alternativă (decizională)	69
	Aplicații. Mini proiect	72
	Elemente de interfată specifice mediului grafic interactiv	76
	Test de evaluare	81
	Reprezentarea structurilor secventiale	82
	Aplicații. Mini proiect	84
	Reprezentarea structurilor secventiale – continuare	86
	Aplicatii	89
	Reprezentarea structurilor alternative prin blocuri grafice	90
	Test de evaluare	92
	Mini projecte	92
		-
Indicați	ii și răspunsuri	94

1 OOLLOOLL

COMPETENȚE GENERALE ȘI SPECIFICE

Utilizarea responsabilă și eficientă a tehnologiei informației și comunicațiilor

- 1.1. Utilizarea eficientă și în condiții de siguranță a dispozitivelor de calcul
- 1.2. Utilizarea eficientă a unor componente software

100

1.3. Utilizarea eficientă și în siguranță a Internetului ca sursă de documentare

2 Rezolvarea unor probleme elementare prin metode intuitive de prelucrare a informației

- 2.1. Identificarea unor modalități algoritmice pentru rezolvarea unor situații din viața cotidiană, exprimate în limbaj natural
- 2.2. Identificarea datelor cu care lucrează algoritmii în scopul utilizării acestora în prelucrări
- 2.3. Descrierea în limbaj natural a unor algoritmi cu ajutorul secvențelor de operații și a deciziilor pentru rezolvarea unor probleme simple

3 Elaborarea creativă de mini proiecte care vizează aspecte sociale, culturale și personale, respectând creditarea informației și drepturile de autor

- 3.1. Aplicarea operațiilor specifice editoarelor grafice în vederea realizării unor materiale digitale
- 3.2. Implementarea unui algoritm care conține structura secvențială și/sau alternativă într-un mediu grafic interactiv
- 3.3. Manifestarea creativă prin utilizarea unor aplicații simple de construire a unor jocuri digitale

GHID DE UTILIZARE A MANUALULUI

Manualul este structurat în două părți: în prima parte, Tehnologia Informației și Comunicației, elevii se vor familiariza cu structura calculatorului, cu modul său de funcționare, vor învăța cum să organizeze informațiile de pe calculator. În partea a doua, Informatică, elevii vor face primii pași în programare, vor afla ce este un algoritm, vor scrie primii algoritmi simpli. Ei vor avea posibilitatea să și aplice aceste cunoștințe, folosind într-un mod creativ și distractiv mediul vizual Scratch.

Scratch este un mediu extrem de ușor de folosit, prin simpla tragere și așezare a unor blocuri, utilizatorul putând să creeze mici animații, prezentări, joculețe, povești interactive.

La începutul fiecărei lecții, la rubrica **VOM ÎNVĂȚA DESPRE...** este anunțat pe scurt obiectivul principal al lecției. Conținuturile lecțiilor sunt însoțite de numeroase curiozități și informații interesante din istoria calculatoarelor și a tehnologiei în rubrica **STIAȚI CĂ?**, acestea având rolul de a stârni curiozitatea elevilor. Elementele importante, de care trebuie să ținem cont, sunt prezentate în rubricile **ATENȚIE** și **REȚINEȚI!**

La finalul fiecărei lecții sunt propuse o serie de aplicații, poiecte și teste de evaluare, în rubricile Aplicații Mini proiect Test de evaluare, în care vor ajuta la fixarea unostintelor însusite și a deprinderilor formate

cunoștințelor însușite și a deprinderilor formate.

La sfârșitul manualului se găsesc o serie de indicații și răspunsuri ale aplicațiilor și testelor de evaluare propuse.

Am sugerat ca o parte din aplicațiile propuse să facă parte din portofoliul elevului, asigurându-se în acest fel o evaluare formativă a elevilor.

i datta

TEHNOLOGIA INFORMAȚIEI ȘI COMUNICAȚIEI

NORME DE ERGONOMIE ȘI DE SIGURANȚĂ

📃 VOM ÎNVĂȚA DESPRE...

Sunteți pregătiți de aventură? Probabil sunteți nerăbdători să aflați cât mai multe despre calculatoare, Internet și să utilizați cât mai eficient un calculator.

Lumina albastră este cauza disconfortului ocular.

Imaginile redate de monitor sunt formate din trei culori: roşu, albastru şi verde. Dintre ele, culoarea albastră este cea mai obositoare. Culoarea albastră naturală din spectrul de culori nu ne afectează. Nu același lucru se întâmplă cu lumina albastră emisă de monitor.

Normele de securitate și protecție a muncii în laboratorul de Informatică

Înainte de a începe să studiem cum funcționează un calculator, din ce este compus și multe alte lucruri interesante pe care le vom învăța în acest an școlar la Informatică, trebuie să ne asigurăm că suntem în siguranță, că nu există pericolul de a ne accidenta sau de a ne îmbolnăvi.

Siguranța voastră în laboratorul de Informatică este foarte importantă! De aceea, accesul în acesta se face numai în prezența profesorului. Există multe pericole la care vă puteți expune, precum pericolul de a vă curenta/electrocuta, pericolul de a deteriora echipamentele sau de a vă accidenta. Iată câteva reguli de bază pe care trebuie să le respectați pentru a fi în siguranță atât voi, cât și colegii voștri:

- Calculatorul trebuie să fie conectat la rețeaua electrică printr-o priză cu împământare.
- Cablurile de alimentare trebuie să fie bine legate și protejate cu ajutorul unor protecții speciale numite *pat* sau *canal de cabluri*.
- Nu aveți voie să umblați la tablouri electrice, prize sau prelungitoare.
- Nu este permisă utilizarea cablurilor electrice neizolate.
- Este interzis accesul la componentele interne ale calculatoarelor, este interzisă demontarea aparatelor sau detașarea carcaselor. Dacă acasă aveți probleme cu calculatorul, vă recomandăm să apelați la un specialist, altfel riscați să vă curentați.
- Nu interveniți asupra sistemelor aflate sub tensiune.
- Când lucrați la calculator trebuie să aveți întotdeauna mâinile curate și uscate.

DOLL

- Calculatoarele și echipamentele periferice din laborator nu se vor muta și nu vor fi lovite sau expuse unor condiții necorespunzătoare de lucru.
- Produsele alimentare și băuturile nu sunt permise în apropierea computerului, răsturnarea din greșeală a acestora putând duce, de exemplu, la stricarea tastaturii sau chiar la scurtcircuite.
- Opriți întotdeauna computerul prin intermediul butonului **Shutdown**. Oprirea de la butonul **On/Off** al calculatorului (mai ales la sistemele mai vechi) poate duce la pierderea unor informații de pe calculator sau, în unele cazuri, chiar la arderea unor componente.
- Nu vă ridicați de la stația voastră de lucru fără acordul profesorului.
- Nu alergați în laborator.
- Nu utilizați CD-ROM-uri, hard diskuri externe sau stick-uri de memorie fără acordul explicit al profesorului, justificat de necesități didactice obiective. Suporturile de memorie pot fi virusate și pot duce la afectarea software-ului de pe calculator sau chiar la nefuncționarea calculatorului.
- Este interzisă modificarea fișierelor de configurare și a celor al căror rol nu este foarte bine cunoscut.
- Nu ștergeți și nu modificați fișierele salvate de colegii voștri. Nu v-ar plăcea nici vouă să vi se șteargă fișierele la care lucrați.
- Este interzisă instalarea programelor. Accesul la Internet se face doar cu acordul profesorului.
- La începutul fiecărei ore, raportați profesorului orice defecțiune pe care o constatați la stația voastră de lucru.

Întreruperile accidentale de curent și fluctuațiile tensiunii electrice pot avea efecte negative asupra aparaturii electrocasnice și electronice (calculatoare, televizoare, echipamente Hi-fi etc). Pot astfel să fie arse anumite componente ale acestora și se pot pierde definitiv date importante.

Pentru a evita aceste situații, este indicată folosirea unor UPS-uri (Uninterrupted Power Supply – sursă de curent neîntreruptibilă), care sunt de fapt niște baterii de capacitate mare ce pot suplini lipsa de curent pentru câteva minute. Astfel, veți avea timp să salvați datele și să opriți în mod corespunzător calculatorul până la revenirea curentului. De asemenea, în cazul fluctuațiilor de tensiune UPS-ul le "absoarbe", astfel încât aparatura conectată la UPS să nu fie afectată.

100,100,1

În mod normal un om clipeşte de aproximativ 20 de ori pe minut, dar, atunci când utilizează un calculator, acest număr scade la aproximativ 7 clipiri pe minut. De aceea conjunctiva se usucă în exces și pot să apară usturimi și alte probleme mai grave la ochi.

Lui Steve Jobs, co-fondatorul Apple, i-au fost acordate, post-mortem, 141 de brevete noi de invenție.

Felefoanele, calculatoarele și alte dispozitive electronice pot contine o cantitate importantă de materiale ce pot fi reciclate, ca de exemplu metale pretioase (aur sau argint). Mai mult, dispozitivele electronice pot contine substante extrem de poluante. De aceea, atunci când nu mai avem nevoie de un dispozitiv electronic, fie s-a stricat, fie este depășit și nu-l mai folosim, nu îl vom arunca, ci îl vom preda unor centre specializate în vederea recuperării materialelor reciclabile și distrugerea deseurilor nereciclabile.

VOM ÎNVĂȚA DESPRE...

Lucrul timp îndelungat la calculator, fără respectarea unor reguli simple, poate duce la probleme de sănătate, uneori destul de grave, precum probleme ale coloanei vertebrale, ale articulațiilor mâinilor, probleme cu ochii, dureri de cap etc. Care sunt regulile simple ce pot preveni apariția unor probleme de sănătate?

Poziția corectă a corpului la stația de lucru

Poziția noastră la calculator trebuie să fie una care să nu solicite inutil mușchii și oasele mâinilor, picioarelor, spatelui sau să provoace dureri de ochi sau de cap. Regulile simple, care pot preveni apariția unor probleme de sănătate, sunt:

SCAUNUL

Scaunul trebuie să aibă o înălțime adaptată, astfel încât picioarele să fie așezate pe podea și să fie complet susținute.

🤄 Genunchii trebuie să fie la aceeași înălțime cu șoldurile.

🏷 🛛 Coapsele trebuie să fie paralele cu podeaua sau ușor înclinate.

Şezutul trebuie să fie apropiat de spatele scaunului, coloana trebuie să fie dreaptă, iar spătarul scaunului trebuie să aibă contact cu curbura din partea lombară; dacă acest lucru nu se întâmplă, este indicată folosirea unei perne speciale.

Umerii trebuie să fie într-o poziție relaxată, cu brațele în poziție verticală pe partea laterală a corpului.

🔖 🛛 Lățimea scaunului trebuie să fie potrivită

TASTATURA

🦶 🛛 Trebuie să fie poziționată orizontal în fața monitorului.

Antebrațele trebuie să fie paralele cu podeaua și într-un unghi de 90° cu brațele, iar încheieturile mâinilor să fie în linie dreaptă cu antebrațele. S-ar putea să trebuiască să folosiți un suport pentru tastatură sau să reglați înălțimea scaunului sau a biroului.

🏷 🛛 Coatele ar fi bine să se sprijine confortabil la un unghi de 90°.

Folosiți un suport moale pentru palmă, pentru a minimiza presiunea de contact cu suprafețele dure ale biroului.

> Palmele trebuie să fie în prelungirea antebrațelor.

MOUSE-UL

Mouse-ul trebuie să fie la același nivel și în imediata apropiere a tastaturii.

Folosiți un mouse care se potrivește ca dimensiune cu mâna și vă păstrează degetele relaxate și ușor curbate.

Utilizați un suport sau un mouse-pad care permite încheieturii mâinii să se odihnească pe o suprafață moale și să evite presiunea de contact.

Nu strângeți prea tare de mouse.

MONITORUL

Monitorul trebuie poziționat direct în fața voastră și paralel cu tastatura.

DOLES

Monitorul trebuie plasat la o distanță confortabilă pentru vizionare, aproximativ 50-60 cm distanță de ochi.

Aproximativ o treime din partea superioară a ecranului trebuie să fie la nivelul ochilor. Acest lucru minimizează efortul gâtului în timp ce lucrați.

Sfaturi generale

✓ Alternați tipul de activități de-a lungul zilei, nu rămâneți timp prea îndelungat în fața calculatorului. Acest lucru va reduce oboseala și va permite utilizarea unui set diferit de mușchi cu poziții diferite.

✓ Faceți 5-10 minute de pauză după fiecare oră petrecută în fața computerului.

 Evitați sesiunile lungi de tastare, deoarece acestea pot provoca leziuni ale mâinilor.

✓ Faceți pauze cât mai dese pentru a evita oboseala ochilor, clipiți des (pentru umezirea ochilor) și, preț de câteva minute, priviți la distanță.

✓ Lumina naturală trebuie să vină din lateral, pentru a evita reflectarea acesteia în ecran.

În următoarele filmulețe veți descoperi și alte sfaturi: https://youtu.be/ofnpBtO1-gA https://youtu.be/PZWSc5EWDoA https://youtu.be/k9clZTh30ZU

REȚINEȚI!

Plasarea monitorului prea în spate vă poate face să stați pe marginea scaunului, cu spatele curbat pentru a compensa distanța.

ATENȚIE

Când nu mai lucrați la calculator sau părăsiți laboratorul, închideți calculatorul pentru a face economie de curent și pentru a permite răcirea acestuia. Astfel îi veți prelungi și durata de viață.

Lăsați întotdeauna ordine la stația de lucru, tastatura și mouse-ul corect așezate, scaunul așezat la locul lui etc.

Aplicații

Priviți imaginea alăturată și explicați cum ar putea fi corectată poziția băiatului la calculator.

Mini proiect

00,100,1

Realizați mici afișe publicitare pentru a avertiza copiii care folosesc laboratorul de Informatică asupra posibilelor pericole și modul de evitare a lor. Alegeți câteva dintre acestea, care prezintă diverse pericole (1-3) și modalități de a le evita, ilustrați-le cu desene cât mai sugestive realizate de voi și expuneți-le, cu ajutorul profesorului, pe panourile/pereții din laborator.

Observație: Faceți o fotografie a panoului realizat de voi și printați-o pe o coală A4. Adăugați-o la portofoliul vostru.

TIPURI DE SISTEME DE CALCUL ȘI DE COMUNICAȚII

VOM ÎNVĂȚA DESPRE...

Să vedem cum au apărut primele calculatoare și cum au evoluat acestea!

✓ Maşinile cu roţi dinţate:
 Leonardo da Vinci (1452-1519)
 1623 – Wilhelm Schickard
 1642 – Blaise Pascal

Momente principale în evoluția sistemelor de calcul

Ați încercat să vă imaginați cum ar fi viața noastră fără calculator, fără telefon sau fără Internet? Probabil vă este destul de greu. Foarte multe domenii nu s-ar fi putut dezvolta fără calculatoare. Să vedem cum au apărut și cum au evoluat! Acest scurt istoric ne va ajuta să înțelegem cât de mult a evoluat acest domeniu într-un timp relativ scurt pe scara istoriei.

Istoria calculatorului sau, de fapt, a mașinilor de calcul, poate fi împărțită în următoarele mari etape:

I. Era mecanică

Primul dispozitiv de calcul a fost abacul și a fost folosit în Europa, China și Rusia. Cel mai vechi abac descoperit a fost folosit în jurul anului 300 î.H. de către babilonieni.

În 1632 a urmat rigla de calcul, bazată pe tabelele de logaritmi ale lui Napier.

Se pare că prima mașină de calcul cu roți a fost proiectată de Leonardo da Vinci (1452-1519), dar nu a construit-o niciodată. Prima mașină de calcul cu roți construită este, probabil, cea din 1623 a profesorului german Wilhelm Schickard.

Blaise Pascal a inventat la doar 19 ani (1642) o mașină numită *Pascaline*, care aduna și scădea numere, și care știa să manipuleze corect transportul (cifra ce se transportă mai departe la adunare). Această mașină este renumită mai ales pentru că odometrul (dispozitivul care măsoară distanța parcursă) de pe bordul mașinilor folosește același principiu cu Pascaline.

Prima mașină care știa să efectueze nu doar adunări și scăderi, dar și înmulțiri și împărțiri, este cea inventată de Gottfried Wilhelm Leibniz în 1674.

Prima mașină programabilă a fost cea proiectată de către Charles Babbage (1791-1871), considerat astăzi părintele calculatorului. Difference Engine (1822-1842) și Analytical Engine (1837-1871), cele două proiecte ale sale, prefigurau invenția calculatorului electronic digital. Niciuna dintre aceste mașini nu au putut fi însă complet finalizate, mai ales din lipsa fondurilor.

II. Era tuburilor catodice (prima generație de calculatoare)

Era calculatoarelor electronice a început cu calculatorul construit în perioada 1939-1942 de către fizicienii John Atanasoff și Clifford Berry. Acest calculator, numit ABC, folosea pentru prima dată sistemul de numerație binar, deoarece cifrele binare puteau fi mai ușor reprezentate cu ajutorul circuitelor electronice, care au două stări, on și off.

DOLLO

În anul 1943 a apărut primul computer de uz general, ENIAC. Acesta a folosit tuburi cu vid pentru circuite și tobe magnetice pentru memorie, fiind enorm: cântărea 30 de tone și ocupa o suprafață de 167 m². ENIAC efectua aproximativ 5.000 de adunări pe secundă.

Limbajul de programare folosit era cel "cod mașină", înțeles de computere. Datele se introduceau în calculator cu ajutorul cartelelor perforate și a bandei perforate. Datele de ieșire erau afișate pe imprimate. Puteau rezolva o singură problemă la un moment dat și putea dura câteva zile sau săptămâni rezolvarea sa.

III. Era circuitelor integrate

Între 1956 și 1963 a apărut *a doua generație de calculatoare*. Tranzistorul a înlocuit tubul cu vid. Astfel, calculatoarele au devenit mult superioare: mai mici, mai rapide, mai ieftine, mai eficiente din punct de vedere al energiei consumate. Două probleme nu au fost însă rezolvate: căldura generată și folosirea cartelelor perforate.

Până în 1963 s-a îmbunătățit limbajul de programare, trecându-se la limbajul criptic care permitea programatorilor să specifice instrucțiunile în cuvinte. Așa au apărut limbajele de programare COBOL și FORTRAN. Calculatoarele din a doua generație au fost primele care și-au păstrat instrucțiunile în memorie.

Între 1964 și 1971 a apărut *a treia generație de calculatoare,* care foloseau circuite integrate. Dezvoltarea electronicii a permis ca tranzistoarele fabricate să fie maimici, folosind semiconductori. În locul cartelelor perforate, utilizatorii au avut acces la tastaturi, monitoare și un sistem de operare. Calculatoarele din a treia generație au devenit multitasking, adică puteau să execute mai multe aplicații în același timp dispunând și de un program central care monitoriza memoria. Cu dimensiuni mai mici și o utilizare mai simplă, calculatoarele din a treia generație au devenit pentru prima dată accesibile publicului larg.

Din 1971 s-a introdus microprocesorul, care este format din mii de circuite integrate construite pe un singur cip de siliciu. Acesta este debutul celei de-*a patra generații de calculatoare*.

În 1981, IBM a introdus primul computer pentru utilizatorul de acasă, iar în 1984 Apple a lansat Macintosh.

În paralel cu dezvoltarea hardware a calculatorului, s-a dezvoltat și partea software. Aplicațiile au devenit mai performante și sistemele de operare mai eficiente și mai ușor de folosit. Sistemele de operare, precum Windows, au o interfață grafică ce permite utilizatorului o navigare ușoară, putem zice intuitivă, de cele mai multe ori făcându-se cu ajutorul mouse-ului și a tastaturii (în capitolele ce urmează o să mai vorbim despre ele).

Oare cum va arăta următoarea generație de calculatoare? Ce ne va rezerva viitorul tehnologic?

100,100,1

✓ 1642 – Blaise Pascal, Pascaline – prima mașină care efectuează adunări și scăderi

✓ 1674 – Gottfried Wilhelm Leibniz, prima maşină care efectuează înmulțiri şi împărțiri

✓ Charles Babbage (1791-1871), prima maşină programabilă

✓ 1939-1942 – John Atanasoff şi Clifford Berry au construit ABC, primul calculator electronic

✓ 1943 – ENIAC, primul calculator electronic de uz general

✓ 1956-1963 - a doua generație de calculatoare, cea a tranzistoarelor

✓ 1963 – primele limbaje de programare

✓ 1964-1971 – a treia generație de calculatoare, care foloseau circuitele integrate

✓ 1971 – a patra generație de calculatoare, cea a microprocesoarelor

✓ 1981 – primul calculator pentru utilizatori casnici

Oare de ce sunt atât de utile calculatoarele? La ce le folosim de fapt?

Primul programator din istorie a fost o femeie, Ada Lovelace, scriitoare şi totodată un talentat matematician englez, iar primul algoritm pe care l-a scris a fost unul pentru calcularea numerelor Bernoulli. Ea era fiica lui Lord Byron, unul dintre cei mai renumiți poeți englezi.

Sisteme de calcul și de comunicații întâlnite în viața cotidiană

Unul dintre avantajele principale ale calculatoarelor este faptul că ne pot ajuta să economisim timp. Prin utilizarea unui computer, sarcinile sunt efectuate automat și suntem scutiți de zeci și mii de ore necesare pentru a realiza manual anumite sarcini de calcul.

Încercați să vă imaginați ce ar însemna dacă toată evidența conturilor clienților și a tranzacțiilor dintr-o bancă s-ar face manual, folosind registre clasice. Ar dura probabil zile întregi pentru a face anumite tranzacții, mai ales în condițiile în care lumea de astăzi este una globalizată.

Dar oare ar mai fi posibile zborurile spațiale? Toate calculele precise de care este nevoie de la momentul proiectării unei navete spațiale și până la calcularea precisă a traiectoriei de zbor ar fi imposibile fără calculatoare extrem de puternice și de performante.

În medicină, calculatorul poate fi folosit pentru păstrarea istoricului medical al fiecărui pacient. Astfel, un medic poate avea acces rapid și eficient la date care îl pot ajuta în stabilirea unui diagnostic corect și al unui tratament eficient. Însă nu doar atât poate face un calculator. Calculatoarele sunt utilizate la multe teste cu ajutorul cărora se stabilește un diagnostic: radiografii de tot felul, computer-tomografiile, RMN-urile (investigații prin rezonanță magnetică) etc.

DOLLO

Dincolo de toate acestea, folosim calculatoarele și în scopuri domestice, facem cumpăraturi on-line din ce în ce mai des, vorbim cu prietenii pe Internet, ne jucăm, ascultăm muzică, citim ziarele etc. Practic, orice activitate zilnică este posibilă cu ajutorul calculatorului.

În lumea calculatoarelor avem parte de hackeri: Black hat, White hat, Gray hat.

În afară de Black hat avem și alte efecte negative din partea folosirii îndelungate a calculatoarelor: probleme de sănătate, accesul la siteuri destinate adulților, accesul la datele personale care pot afecta viața personală. De aceea s-a introdus noțiunea de "securitate pe Internet" (programe de protecție) și "controlul parental".

În orașul rusesc Ekaterinburg există un monument dedicat tastaturii QWERTY. Se numește "Klaviatura Pamyatnik" și este făcută din piatră, cu iarbă între taste.

Descrieți pe scurt cum poate fi folosit un calculator la următoarele locuri de muncă: a. într-o bibliotecă;

- a. IIIII-0 DIDII0leca,
- b. la secretariatul unei școli;

00,000

c. într-o fabrică.

Mini proiect

Imaginați-vă că sunteți un adolescent din anul 2050. Scrieți un scurt eseu care să ilustreze cum folosiți calculatorul la școală, acasă, de-a lungul unei săptămâni tipice acelor vremuri. Adăugați acest eseu la portofoliul vostru.

Mini proiect

Alegeți-vă o literă a alfabetului. Poate fi litera cu care începe prenumele vostru, de exemplu, sau puteți trage la sorți toată clasa. Căutați pe Internet (puteți folosi adresa *https://www.computerhope.com/ people/index.htm* sau orice alt site pe care îl găsiți) o personalitate al cărei nume începe cu litera aleasă și care a avut contribuții în domeniul Informaticii. Realizați un mic afiș, format A3, care să prezinte personalitatea respectivă (numele, o poză și explicați pe scurt în ce a constat contribuția sa).

Faceți o fotografie a afișului realizat de voi, listați-l pe o coală A4 și adăugați-l la portofoliul vostru.

ELEMENTE DE ARHI-TECTURĂ ALE UNUI SISTEM DE CALCUL

Structura generală a unui sistem de calcul

VOM ÎNVĂȚA DESPRE...

Când vă gândiți la computer vă gândiți, cel mai probabil, la calculatorul desktop de acasă sau la laptopul vostru. Ce puteți face cu acest computer? Multe lucruri: ascultați muzică, trimiteți mesaje pe Internet prietenilor, vizionați filme, vă jucați. Dar ce este un calculator și cum funcționează el?

abac = un dispozitiv cu bile folosit pentru numărare și pentru a efectua calcule

prelucrează datele = modifică datele, realizează calcule cu datele respective etc.

componente = părțile unui întreg RAM (Random Access Memory)

= memoria volatilă a calculatorului, din care se șterg datele când se oprește calculatorul

prin intermediul = (aici) cu ajutorul cuiva

date prelucrate = date modificate în funcție de ce avem nevoie dispozitive periferice = dispozitive atașate calculatorului periferic = mărginaș, secundar

Calculatorul este un dispozitiv electronic care poate realiza în mod automat o serie de operații, conform unui set precis de instrucțiuni.

Calculatorul împreună cu software-ul și dispozitivele periferice formează *sistemul de calcul*.

Software-ul reprezintă programele din calculator care efectuează calcule, prelucrează date, controlează dispozitivele.

Hardware-ul reprezintă totalitatea părților fizice, electronice și mecanice dintr-un sistem de calcul.

Dispozitivele periferice reprezintă totalitatea aparatelor electronice atașate unui calculator, care-l ajută să funcționeze.

Sunt patru pași importanți în funcționarea unui sistem de calcul: 1. introducerea (citirea) datelor;

- 2. stocarea (memorarea) datelor;
- 3. prelucrarea (procesarea) datelor;
- 4. scrierea/afișarea datelor.

Acești pași reprezintă cerințele pentru un calculator electronic, stabilite pentru prima oară în 1940 de către americanul de origine austro-ungară *John von Neumann* (1903-1957), matematician și informatician renumit. Calculatoarele pot diferi foarte mult între ele ca design, performanțe, preț etc, însă toate au aceeași structură de bază stabilită de Neumann.

DO LEOO

Mașina von Neumann are trei componente de bază:

- dispozitivele de intrare/ieșire;
- unitatea centrală de prelucrare;
- memoria.

Pentru a explica modul de funcționare a unui sistem de calcul, *John von Neumann* a schițat unul dintre primele modele:

John von Neumann

Astfel: datele sunt introduse în calculator cu ajutorul dispozitivelor de intrare (DPI) care, prin intermediul canalelor de intrare/ieșire, ajung la unitatea centrală (UC), unde sunt prelucrate sau memorate cu ajutorul memoriei.

Datele prelucrate ajung la utilizator prin intermediul dispozitivelor periferice de ieșire.

				_
DPI	UAL + UCC = UCP (Unitatea Centrală de Prelucrare)			DPE
INPUT (date de intrare)	UAL Unitatea Aritmetic Logică UNITAT	UC co- Unitatea de și cor EA DE MEMORIE	EC e comandă atrol E	OUTPUT (date de ieșire)
	ROM (nevolatilă)	RAM (volatilă)	CACHE	
	MI = Memoria Internă			

00,000

UC = Unitatea Centrală

Configurația minimă necesară pentru funcționarea unui calculator este: UC (care include procesor și memorie internă), tastatură și monitor.

Pentru a funcționa, toate sistemele de calcul au nevoie de un sistem de operare. Sistemele de operare au fost adaptate în funcție de necesitățile sistemului de calcul, cum ar fi: un număr mare de utilizatori, nivelul de securitate al datelor, pentru ce sunt folosite (într-o bancă, acasă...) etc. Unul dintre cele mai cunoscute sisteme de operare este Windows.

Cel mai vechi instrument cunoscut pentru utilizarea în calcul este abacul. Se crede că a fost inventat în Babilon în anul 2400 î.H.

Abacele par să fi fost indispensabile în civilizațiile antice precum cea chineză, babiloniană, greacă, romană ş.a. din cauza unui sistem de numerotare adecvată pentru calcule. Ele se regăsesc şi la aztecii din America centrală, cu unele variante totuşi.

În anul 1943 a apărut primul calculator electronic, numit ENIAC: Electronic Numerical Integrator And Computer.

Rolul componentelor hardware ale unui sistem de calcul

UAL+UCC = UCP

(Unitatea Centrală de Prelucrare sau procesor)

UAL

Efectuează operațiile specificate prin instrucțiuni și va determina unele rezultate.

UCC

Stabilește ordinea efectuării instrucțiunilor și coordonează funcționarea celorlalte componente ale sistemului de calcul, inclusiv a dispozitivelor periferice.

MI

Memoria internă realizează memorarea datelor, a instrucțiunilor, a rezultatelor intermediare și finale, sub coordonarea UCC.

Există trei componente ale memoriei interne (MI):

- Memoria RAM (Random Access Memory) este o memorie temporară, al cărei conținut se șterge la oprirea calculatorului. În memoria RAM sunt încărcate datele în vederea prelucrării, precum și programele care realizează aceste prelucrări.
- → Memoria ROM este o memorie permanentă, care nu poate fi scrisă de utilizator și care are în primul rând rolul de a inițializa componentele calculatorului și de a porni sistemul de operare la pornirea calculatorului.
- → Memoria cache este o memorie temporară de mare viteză, folosită pentru a memora cele mai frecvent utilizate date.

DPI

Dispozitivele periferice de intrare prin intermediul cărora se introduc datele inițiale în calculator.

DPE

Dispozitivele periferice de ieșire prin intermediul cărora utilizatorul primește datele prelucrate.

Canale I/E

Preiau datele și instrucțiunile de la DPI și transferă rezultatele prelucrării datelor către DPE.

OLLOO

Aplicații

1. Completați rebusul următor!

Orizontal:

2 Americanul de origine austro-ungară care a schițat primul model al sistemului de calcul

4 A prelucra

100,100,

- 5 Abreviere pentru dispozitive de intrare
- 7 Memoria temporară de mare viteză

Vertical:

- 1 Atașat calculatorului
- 3 Programele din calculator
- 5 Abreviere pentru dispozitive de ieșire
- 6 Abreviere pentru unitatea centrală de prelucrare
- 2. Asociați termenii din coloana stângă cu definițiile corespunzătoare din coloana dreaptă:
 - UAL
 - Software
 - UCP
 - UCC
 - HDD
 - Hardware
 - DPE
 - DPI

- Unitatea centrală de prelucrare
- Programele de pe calculator
- Dispozitive periferice de ieşire
- Drivere hard disk
- Unitatea aritmetico-logică
- Dispozitive periferice de intrare
- Unitatea de comandă și control
- Aparatele electronice ataşate unui calculator, care-l ajută să funcționeze
- 3. Desenați schița care explică modul de funcționare a unui sistem de calcul John von Neumann.
- 4. Completați spațiile punctate:
 Datele prelucrate ajung la utilizator prin intermediul
 Introducerea datelor se realizează cu ajutorul
 Mașina von Neumann are trei componente de bază
- 5. Care sunt cei patru pași pentru funcționarea unui sistem de calcul?

TIPURI DE DISPOZITIVE

Calculatorul este o mașină programabilă care răspunde comenzilor date de utilizator. Acestea sunt introduse prin intermediul *dispozitivelor periferice de intrare* și, după prelucrare, ajung la utilizator prin intermediul *dispozitivelor periferice de ieșire*.

Mouse-ul a fost inventat în anul 1963 de către Douglas Engelbart de la Centrul de Cercetare din Stanford.

Sub fiecare buton de la tastatură se află circuite și de aceea funcționează ușor la o simplă apăsare.

Dispozitive periferice

A. Dispozitive periferice de intrare

Exemple: mouse, tastatură, creion optic, trackball, tabletă grafică, scanner, joystick, microfon, camera video etc.

Rolul dispozitivelor periferice de intrare: permit introducerea datelor în calculator.

MOUSE

Este un dispozitiv periferic de intrare care controlează mișcarea cursorului pe ecran. Cursorul mouse-ului se mai numește și *pointer* (din engl.: *ac indicator*) pentru că putem arăta cu el diferite elemente. A fost numit astfel din cauza formei lui.

Tipuri de mouse-uri: cu fir sau wireless; laser sau cu bilă.

Mod de utilizare. Pentru a-l pune în mișcare trebuie glisat cu el pe o suprafață plană.

Butoane și funcții. Mouse-ul are în general trei butoane, fiecare dintre acestea îndeplinindu-și funcția: butonul din stânga, cel din dreapta și rotița. Prin mișcarea rotiței ne deplasăm în sus sau în jos în cadrul ferestrei curente (în limba engleză poartă denumirea de *scroll wheel*). Când spunem "dublu clic" ne referim, în vorbirea curentă, că am apăsat de 2 ori, rapid, pe butonul din stânga al mouse-ului (prin acestă acțiune deschidem un fișier sau un folder sau lansăm în execuție un program). Printr-un singur clic selectăm un obiect sau activăm o comandă.

TASTATURA

Cu ajutorul ei se introduce textul și putem da calculatorului comenzi mai complicate decât cu mouse-ul. Tastatura este formată din: taste funcționale (F1, F2 F12), taste alfanumerice (literele), taste numerice (cifrele, *, /, –, +), taste de deplasare (săgețile), taste reci (Shift, Ctrl, Alt – acestea funcționează doar în combinație cu alte taste), taste speciale.

100LL

Scurt breviar al tastelor speciale și acțiunea lor:

100,100,1

TASTA	Prin apăsare are următoarea ACȚIUNE			
ESC	Închide fereastra de dialog curentă.	Esc		
ТАВ	Într-un editor de texte: deplasează cursorul mose-ului la un număr exact de spații. În sistemul de operare Windows: poziționează selecția prin "săritură" de la un obiect la altul.	Tab M		
Caps Lock	Dacă este activ (este aprins de obicei un led) textul introdus este scris cu majuscule.	Caps Lock		
Win Key	Activează meniul Start.	(2)		
Space	Inserează un spațiu în poziția curentă a cursorului și mută cursorul după acel spațiu.			
Enter	Într-un editor de text: mută cursorul la începutul liniei următoare. Într-o casetă de dialog: confirmă opțiunea selectată.			
Page Up	Într-un editor de text: mută cursorul cu o pagină mai sus.	Page Up		
Page Down	Într-un editor de text: mută cursorul cu o pagină mai jos.	Page Down		
Home	Într-un editor de text: mută cursorul la începutul documentului.	Home		
End	Într-un editor de text: mută cursorul la sfârșitul documentului.	End		
Insert	Comută în modul de "suprascriere" (scriere peste): textul existent la poziția în care se află cursorul este înlocuit cu textul pe care îl scrieți.	Insert		
Delete	Șterge caracterul situat după poziția curentă a cursorului.	Delete		
Backspace	Șterge caracterul situat înainte de poziția curentă a cursorului.	•		
Prn Scrn	Face o poză conținutului actual al ecranului. Acesta se va reține într-o zonă specială a memoriei, numită <i>Clipboard</i> .	Print Scrn SysRq		
Num Lock	Activează grupul de taste numerice din partea dreaptă a tastaturii cla- sice.	Num Lock		
Shift	În combinație cu o literă, o transformă în majusculă (funcția Caps Lock dezactivată). În combinație cu altă tastă, redă pe ecran simbolul desenat în partea de sus a acelei taste.	Shift		
ALT+F4	Închide fereastra activă.	Alt F4		
F1	Help	F1		

TABLETA GRAFICĂ ȘI CREIONUL OPTIC

Tableta grafică permite transformarea digitală a desenelor realizate cu creionul optic. Imaginea nu apare în general pe suprafața tabletei ci pe monitorul calculatorului. Alte tablete au funcția de a înlocui mouse-ul, fiind folosite pentru selectarea și navigarea pe calculator.

Tableta este compusă dintr-o suprafață plată denumită planșetă, în interiorul căreia se găsește o rețea de fire fine, perpendiculare, care sunt parcurse de pulsuri de curent electric foarte rapide.

Un electromagnet amplasat în vârful creionului grafic va sesiza aceste pulsuri și comunică calculatorului poziția curentă.

CITITOR DE COD DE BARE

Scanează codurile de bare, aflate de obicei pe produse, pentru a afla detalii despre ele precum: preț, dată de intrare etc.

JOYSTICK

Este un dispozitiv cu funcție asemănătoare mouse-ului, folosit mai ales la jocuri. Este format dintr-o bază pe care sunt montate o manetă și mai multe butoane de control. Prin acționarea butoanelor de control se declanșează diferite evenimente pe ecran, iar prin mișcarea manetei în diferite direcții, se deplasează cursorul mouse-ului (sau un obiect pe ecranul jocului).

SCANER

Este un dispozitiv de intrare care poate converti orice imagine de pe hârtie sau de pe o altă suprafață plană într-o formă electronică acceptată de calculator. Imaginea pe care o citește scanerul este o suprafață formată din puncte. Fiecare punct este definit printr-un cod de culoare, obținându-se versiunea digitală a imaginii.

Dacă este instalat pe calculator un program special de recunoaștere optică a caracterelor (OCR), scanerul poate "citi" textele scanate și le poate converti în fișiere ce pot fi apoi prelucrate cu un procesor de texte.

DOLLO

- Scanerul este caracterizat de:
- rezoluție numărul de puncte/inch pe care le poate citi;
- număr de culori recunoscute;
- viteza de scanare.

MICROFON

Introduce sunetul în calculator.

CAMERA VIDEO

Introduce imaginile și sunetele în calculator.

B. Dispozitive periferice de ieșire

Rolul dispozitivelor periferice de ieșire: permit extragerea datelor din calculator.

Principalele dispozitive periferice de ieșire sunt:

MONITOR

Este un ecran asemănător unui televizor pe care sunt afișate informațiile digitale.

Caracteristici:

- diagonală;
- tehnologie utilizată (LCD, CRT, cu plasmă);
- rezoluție, care se exprimă în număr de pixeli (puncte informaționale) ce pot fi afișate pe fiecare dimensiune;
- adâncimea de culoare (numărul de culori disponibile);
- rata de reîmprospătare.

BOXE

Prin intermediul lor se ascultă sunetele din calculator.

IMPRIMANTĂ

Este un dispozitiv prin intermediul căruia se tipăresc pe hârtie fișierele digitale. Există mai multe tipuri de imprimante și anume:

Imprimanta matricială (sau "cu ace") – oferă o calitate scăzută și are viteză mică de imprimare. Este folosită pentru foi de calitate scăzută, fiind singurul tip de imprimantă care permite imprimarea simultană a 2 sau 3 exemplare, folosind hârtie autocopiativă.

Imprimanta cu jet de cerneală – oferă o calitate medie spre ridicată, la o viteză medie. Este folosită pentru documente, fotografii sau fișiere grafice.

🤟 İmprimanta laser – oferă o calitate ridicată la viteză înaltă.

Imprimanta termică – folosește o hârtie specială. Este utilizată pentru legitimații, carduri etc.

Caracteristici ale imprimantelor:

- rezoluția;
- viteza de tipărire, care se exprimă în număr de pagini pe minut, ppm;
- dimensiunea maximă a hârtiei;

100,100

- memoria proprie;
- numărul de culori.

Cea mai mare imprimantă din lume măsoară 12 x 50 metri, iar cea mai mică imprimantă măsoară doar 2.5 x 5 x 27.5 cm?

Primul model de imprimantă a fost proiectat de către Charles Babbage în secolul al XIX-lea, fiind ultima piesă a dispozitivului de calcul mecanic proiectat de el. Această imprimantă nu a fost însă construită de Babbage niciodată, însă la Muzeul de Științe din Londra a fost construit și expus, în anul 2000, un dispozitiv funcțional folosind planurile acestuia.

Istoria imprimantelor moderne a început însă în 1938, când Chester Carlson a inventat tehnologia folosită astăzi la imprimantele laser.

Chester Carlson

Imprimanta 3D

Este o imprimantă specială cu ajutorul căreia pot fi realizate obiecte solide tridimensionale de orice formă. Obiectul este realizat prin depunerea de straturi succesive de material. Imprimantele 3D permit designerilor să producă într-un timp scurt un prototip. În consecință, prototipul poate fi testat și remodelat rapid.

PLOTTER

Dispozitiv asemănător imprimantei, utilizat pentru imagini cu dimensiuni mari și rezoluție foarte bună.

Plotter-ul poate lista linii continue, în timp ce imprimanta doar poate simula aceste linii (ea tipărește linia printr-o serie de puncte situate la distanțe foarte mici). El are o precizie mai mare decât imprimanta și de aceea este folosit foarte mult în proiectare.

Listarea cu un plotter se poate face în orice direcție, spre deosebire de o imprimantă care listează doar de sus în jos și de la stânga la dreapta.

DOLLE

C. Dispozitive periferice de intrare-ieșire

Rolul dispozitivelor periferice de intrare-ieșire: permit atât introducerea datelor în calculator, cât și extragerea datelor din calculator.

FAX

Este un aparat care transmite imagini digitale prin intermediul telefoniei.

MODEM

Este un dispozitiv care permite calculatorului să transmită/ primească datele digitale.

TOUCH SCREEN/ ECRAN TACTIL

Este un ecran LCD prin intermediul cărui avem acces la datele din calculator, telefon sau tabletă.

Comenzile sunt date prin atingere cu degetul sau cu un "creion".

CAMERĂ DIGITALĂ

Este utilizată pentru realizarea fotografiilor digitale

SWITCH

Este un dispozitiv care realizează interconectarea diferitelor segmente de rețea pe baza adreselor MAC.

ROUTER

Este un dispozitiv care conectează două sau mai multe rețele de calculatoare bazate pe "comutarea de pachete". În cazul unui router nu mai este nevoie de un calculator pe post de server ca în cazul switch-ului.

00,000

Router

📃 VOM ÎNVĂȚA DESPRE...

Am văzut că UCP (Unitatea Centrală de Prelucrare) citește și memorează temporar datele și instrucțiunile pe care le execută în memoria internă.

În această lecție vom învăța despre un alt tip de memorie, și anume, memoria externă.

Primele forme de memorie externă foloseau role de hârtie perforată, cartele de carton perforat sau role de bandă magnetică. O cartelă perforată memora, de fapt, doar un caracter sau o cifră. Astfel, un program chiar și foarte mic, care astăzi ocupă câțiva kilobytes, pe vremea respectivă folosea o cutie întreagă de astfel de cartele.

Dispozitive de stocare a datelor

Un alt tip de memorie este memoria externă, numită și *memoria secundară*. *Memoria secundară* păstrează programele și datele pentru a putea fi utilizate ulterior, deoarece este o memorie nevolatilă (nu se șterge la închiderea calculatorului).

Unități de măsură a memoriei

Înainte de a discuta despre tipurile de memorii externe, trebuie să vedem cum putem compara capacitatea acestora. De aceea, prezentăm în cele ce urmează unitățile de măsură ale memoriei, multiplii byteului sau octet-ului, construiți pe baza multiplilor lui 2.

Cea mai mică unitate de măsură a informației este **bit**-ul. El memorează una dintre cifrele **0** sau **1**, corespunzând celor două stări ale unui circuit electric, închis sau deschis.

Alte unități de măsură ale memoriei sunt:

1 byte (1 B) sau octet = 8 biți 1 kylobyte (1 KB) = 2¹⁰ bytes = 1024 bytes 1 megabyte (1 MB) = 2¹⁰ KB = 1024 KB 1 gigabyte (1 GB) = 2¹⁰ MB = 1024 MB 1 terabyte (1 TB) = 2¹⁰ GB = 1024 GB 1 petabyte (1 PB) = 2¹⁰ TB = 1024 TB 1 exabyte (1 EB) = 2¹⁰ PB = 1024 PB 1 zettabyte (1 ZB) = 2¹⁰ EB = 1024 EB 1 yottabyte (1 YB) = 2¹⁰ ZB = 1024 ZB

Dispozitive de stocare a datelor

În funcție de tehnologia de memorare a datelor, aceste dispozitive se împart în:

A. Dispozitive magnetice

Stocarea datelor se face pe un mediu/o suprafață magnetizată. Aceste dispozitive folosesc electromagnetismul pentru a memora și citi datele.

Din această categorie de memorii fac parte:

♦ Hard diskul (HDD)

Acesta este compus din mai multe discuri suprapuse, numite platane, care sunt rotite în permanență. Informația este citită/scrisă cu ajutorul unor capete de citire/scriere.

Hard disk-urile au, în general, capacități mari de memorie (câteva sute de gigabytes sau chiar câțiva terabytes).

♦ Discheta (Floppy disk)

Este un dispozitiv care era foarte uzual acum câțiva ani, însă în prezent a cam dispărut.

Dischetele erau formate dintr-un disc magnetic, ușor flexibil, având cam același mod de funcționare ca și hard diskul, dar de capacitate și viteză mult mai mici. Capacitatea unei dischete era de aproximativ 1,4 MB. Aceste dispozitive erau ușor de transportat, fiind utilizate pentru transferul datelor și al programelor, însă se defectau foarte ușor, existând riscul de a pierde toate informațiile memorate.

Pentru citirea/scrierea datelor pe dischete se foloseau niște dispozitive speciale, numite unități de dischetă.

În septembrie 1956 IBM a lansat 305 RAMAC, primul "super" computer cu hard disk. Hard diskul cântărea peste o tonă și putea memora 5 MB de date.

B. Dispozitive optice

Dispozitivele optice de memorie stochează informația pe discuri și o citesc cu ajutorul unui laser, prin observarea reflexiei.

În prezent sunt folosite următoarele tipuri de discuri optice:

CD-urile (Compact Disc) – pot stoca până la 80 de minute de date în format audio necomprimate (700 MB de date).

Un CD este alcătuit dintr-un plastic policarbonat, acoperit cu un strat subțire de aluminiu. Metalul este protejat, prin aplicarea unui strat de lac direct pe suprafața reflexivă.

UVD-urile (Digital Video Disc) – au aceleași dimensiuni ca și compact discurile, dar sunt capabile să stocheze aproape de 7 ori mai multă informație.

Blu-ray Diskurile – au fost proiectate pentru a înlocui formatul DVD. Au aceeași formă și mărime ca un CD sau un DVD, cu 25 GB pe strat și două straturi (în total 50 GB). Fiind mult mai sensibile la zgârieturi, acestea au fost introduse în învelişuri speciale.

00,000

Nu faceți confuzie între un floppy/CD/DVD, care este suportul efectiv pe care se memorează datele și unitatea de floppy/CD/DVD, care este dispozitivul cu ajutorul căruia putem citi informația de pe acesta.

Orice unitate floppy poate citi datele de pe dischete, dar poate să și scrie informații pe ele.

Unitățile de CD/DVD pot doar să citească datele de pe suport. Pentru a putea scrie informațiile pe un CD/DVD este nevoie de un CD-Writer/DVD-Writer. Un DVD-Writer poate inscripționa atât DVD-uri, cât și CD-uri, dar un CD-Writer va inscripționa doar CD-uri.

1980 – a fost construit primul hard disk cu capacitate de 1 GB.

1991 – a apărut hard disk-ul de 2,5 inch, cu o capacitate de 100 MB.

2005 – a început comercializarea hard disk-urilor de 500 GB.

2008 – Seagate a anunțat primul hard disk de 1,5 TB.

În 1994, un grup de 7 companii au început să studieze un nou standard și anume Universal Serial Bus (USB) care să permită conectarea mai ușoară a dispozitivelor periferice la calculator.

În 1996 apare standardul USB 1.0. Standardele USB au înlocuit treptat alte metode mai puțin prietenoase de conectare a dispozitivelor la calculator, ca de exemplu porturile paralele și seriale, porturile PS/2 etc. Toate aceste unități optice sunt sensibile la deteriorări, atât din cauza folosirii normale, cât și din cauza expunerii la mediul înconjurător. Zgârieturile pot fi reparate prin reumplerea lor cu un plastic refractant asemănător sau prin netezire.

În funcție de modul de inscripționare, există variante ale acestor unități și anume:

- CD, CD-ROM, DVD, BD-ROM: sunt dispozitive doar de citire (Read Only Memory);
- CD-R, DVD-R, DVD+R, BD-R: pot fi inscripționate o singură dată, folosind un dispozitiv special (CD-Writer, DVD-Writer sau BD-Writer);
- CD-RW, DVD-RW, DVD+RW, DVD-RAM, BD-RE: pot fi inscripționate de mai multe ori și se poate șterge informația de pe ele. Citirea este rapidă, însă inscripționarea este mult mai lentă decât la celelalte unități.

C. Dispozitive folosind semiconductori

Aceste memorii utilizează circuitele integrate, bazate pe semiconductori, pentru a stoca informații.

Se cunosc mai multe tipuri de astfel de memorii:

Sequence Memoriel flash (stick-urile de memorie, cardurile de memorie) — foarte populare în prezent, utilizate pentru memorarea și transferul datelor între calculatoare.

SSD-urile (Solid State Drive) — sunt discuri cu viteze foarte mari, care au început să înlocuiască hard diskurile la laptopurile și calculatoarele mai noi.

Aplicații

- I. Răspundeți, pe scurt, la următoarele întrebări:
 - 1. Ce sunt dispozitivele periferice de stocare?
 - 2. Care este rolul și modul de utilizare al mouse-ului?
 - 3. Ce combinații de taste cunoașteți și care sunt funcțiile lor?
 - 4. Dați exemplu de 3 dispozitive periferice de intrare. Care sunt funcțiile acestora?
 - 5. Ce este monitorul și care este rolul lui?
 - 6. Ce este HDD?
 - 7. Cum se numește cea mai mică unitate de măsură a informației?
 - 8. Dacă aveți nevoie de o imprimantă rapidă de birou, ce tip de imprimantă veți alege? Justificați, pe scurt, răspunsul dat.

II. Completați spațiile punctate:

- a. 1 byte = biți
- b. 5 GB = KB
- c. 1.2 MB = KB
- d. 1.2 MB = B
- e. 2 TB = MB

III. Rezolvați următorul careu:

Orizontal:

- 1 Sistem de operare
- 68 biți
- 7 Caracteristică a monitorului

100.100.1

- 8 Tip de monitor
- 9 Dispozitiv asemănător imprimantei
- 10 Program cu rol de interfață între sistemul de operare și un dispozitiv periferic

Vertical:

- 2 O utilizați pentru a scoate un text de pe calculator pe hârtie
- 3 Tip de procesor
- 4 Componentele fizice ale unui calculator
- 5 Dispozitiv periferic de intrare-ieșire

IV. Potriviți componentele din coloana A cu funcția lor din coloana B.					
	A B		В		
1.	RAM	à	afișează rezultatele prelucrărilor		
2.	port	b)	permite transferul pe hârtie a documentelor		
3.	monitor	c)	realizează calcule, controlează toate activitățile din calculator		
4.	tastatură	d)	memorează temporar datele prelucrate de către procesor		
5.	procesor	e)	permite redarea sunetelor		
6.	boxe	f)	introduce date în calculator, seamănă cu o mașină de scris		
7.	router	g)	permite conectarea la calculator a dispozitivelor periferice		
8.	imprimantă	h)	permite conectarea a două sau mai multe rețele		

V. Găsiți în careul de litere de mai jos cât mai multe denumiri ale unor componente hardware. Încercuiți cuvintele descoperite.

S	Р	R	0	С	Е	S	0	R	Т	U	R
С	Н	А	R	D	М	0	U	S	Е	D	0
D	В	Е	А	Μ	0	Ν	Ι	Т	0	R	U
R	0	Q	Μ	S	С	А	Ν	Е	R	R	Т
0	Х	S	J	0	Y	S	Т	Ι	С	Κ	Е
Μ	Е	Μ	Ι	С	R	0	F	0	Ν	۷	R
Р	L	0	Т	Т	Е	R	D	Ι	S	С	W
I	Μ	Р	R	Ι	Μ	А	Ν	Т	А	Ν	С

VI. Scrieți numele componentelor indicate în imagine.

DULL

1	9
0	10
2	10
3	11
4	12
5	13
6	14
7	15
8	16

VII. Scrieți semnificația fiecărei prescurtări de mai jos. Puteți folosi Internetul acolo unde nu știți să răspundeți.

LCD
HD
CD-RW
GB
S0
RAM
ROM
DVD
PC
UCP
USB

Mini proiect

Maria dorește să deschidă un studio foto. Ajutați-o să își facă un buget pentru a cumpăra aparatura necesară (aparat foto, trepied, lumini, imprimantă, spațiu, calculator, software etc) în funcție de profilul studioului (ex: fotografie de produs, de nuntă etc).

Pentru realizarea acestui proiect, vă veți împărți (după preferințe sau prin tragere la sorți) în grupe de câte 3-4 elevi. Proiectul final va cuprinde (într-un dosar):

- numele echipei și numele elevilor din grupă;
- prezentarea profilului ales pentru studioul foto;
- lista echipamentelor necesare, cu o scurtă justificare (de ce este necesar acel dispozitiv și/sau model) și prețul acestora.

Atenție! Veți adăuga acest proiect la portofoliul vostru.

100,000

SISTEME DE OPERARE

A .A

Rolul unui sistem de operare

Principalul rol al sistemelor de operare este de a face legătura între resursele materiale (hardware), utilizator și aplicații. Atunci când un program vrea să acceseze un dispozitiv al sistemului de calcul, el nu va trimite informațiile către dispozitivul periferic, comunicarea dintre program și periferice fiind realizată de sistemul de operare prin intermediul driverelor.

Am văzut până acum din ce este compus un calculator și ce dispozitive putem să conectăm la acesta, însă toate acestea sunt inutile fără software, și, mai ales, fără existența unui sistem de operare.

Driver-ul este un program special care controlează un anumit dispozitiv periferic conectat la calculator. Există, de exemplu, drivere pentru fiecare tip de imprimantă, monitor, CD-Writer sau mouse. Dacă nu aveți drivere pentru dispozitivul vostru, acesta nu va fi recunoscut de sistemul de operare.

RETINETI!

Nucleul sistemului de operare conţine programele necesare pentru gestionarea resurselor calculatorului, de aceea el trebuie să fie în permanenţă păstrat în memoria internă.

Atunci când se pornește calculatorul, un program aflat în memoria ROM inițializează echipamentele periferice, identifică configurația calculatorului și caută un suport (hard disk, disk extern, CD) pe care să existe un sistem de operare.

Iată care sunt, pe scurt, principalele operații de care este responsabil un sistem de operare:

- Controlează execuția programelor: le încarcă în memoria internă, le lansează în execuție și, la final, încheie execuția acestora și eliberează resursele folosite.
- Planifică și coordonează execuția simultană a mai multor programe (multitasking).
- Gestionează resursele necesare programelor și asigură utilizarea în comun a acestora de către mai multe programe.
- Permite realizarea operațiilor de intrare-ieșire cu ajutorul dispozitivelor periferice.
- Asigură o interfață cu utilizatorul.
- Asigură securitatea la executarea programelor, garantând că resursele sunt utilizate numai de către programele și utilizatorii autorizați să realizeze aceste operații.

Pentru îndeplinirea acestor sarcini, sistemul de operare cuprinde un set de pachete software, grupate astfel:

Kernel-ul (nucleul) sistemului de operare – cuprinde programele ce asigură funcțiile de bază ale sistemului de operare, cum ar fi gestionarea memoriei, proceselor, fișierelor, intrărilor și ieșirilor principale și funcțiile de comunicare;

Interfața sistemului de operare – permite comunicarea cu sistemul de operare printr-un limbaj de control, permițând utilizatorului să controleze perifericele fără a cunoaște caracteristicile hardware-ului utilizat, gestionarea adreselor fizice etc.;
 Sistemul de fișiere.

COOL COOL

Exemple de sisteme de operare:

MS-Dos, Windows, Linux, MacOS, Novell, Unix etc.

ȘTIAȚI CĂ?

În 1961, Burroughs Corporation a introdus B5000 cu sistemul de operare MCP (Master Control Programme).

> În 1962, Atlas Supervisor a lansat o îmbunătățire a acestuia, Manchester Atlas, considerat de mulți ca primul sistem de operare modern recunoscut. Brinch Hansen a descris-o ca fiind "cea mai importantă descoperire din istoria sistemelor de operare".

Test de evaluare					
 Care dintre următoarele nu reprezintă o funcție a sistemului de operare? a. transferă datele în și din memorie; b. asigură transferul de date către periferice, precum imprimanta; c. ajustează volumul sunetului. 					
 Care dintre următoarele nu es a. Linux; Windows Me; 	ste un sistem de operare? c. Chrome; d. MacOs.	1,5 puncte			
3. Windows 10 este un sistem de operare multitasking?a. Da;b. Nu.					
 4. Unde sunt încărcate program a. Memoria ROM; b. Memoria Ram; 	ele din nucleul sistemului de operare c. Memoria cache; d. Hard disk.	1,5 puncte ?			
 1,5 pun 5. Care dintre următoarele variante nu reprezintă o funcție a sistemului de operare? a. redenumirea unui fișier; c. instalarea unui driver de imprimantă; b. scanarea unui document: d interfata cu utilizatorul 					
 1,5 puncte 6. Folosești Windows 10. Ai dat clic pe meniul Start, iar apoi ai apăsat tasta săgeată sus și tasta Enter. Ce se va afișa? 					
a. <i>Microsoft Eage;</i> b. Menul All Apps (Toate Apl	icațiile); d. Aplicația <i>File Explorer</i> .	1,5 puncte Se acordă 1 punct din oficiu.			
100,100,1		Sisteme de operare 3			

SISTEME DE OPERARE 33

Interfața cu utilizatorul este formată din totalitatea mijloacelor prin care utilizatorii interacționează cu calculatorul, cu un dispozitiv periferic sau cu un program. Prin intermediul interfeței utilizatorii introduc date și primesc răspunsuri, adică interacționează cu sistemul.

Un "bunic" al interfeţelor grafice a fost inventat de cercetătorii de la Stanford Research Institute, conduşi de Douglas Engelbart. Ei au dezvoltat un sistem ce utiliza hiperlinkuri text ce erau manipulate cu ajutorul mouse-ului.

Elemente de interfață ale unui sistem de operare

Există două tipuri de interfețe cu utilizatorul:

Interfețe de tip linie de comandă – utilizatorul introduce comenzile de tip text, iar rezultatele se afișează, de asemenea, sub forma unui text. Aceste sisteme de operare au un program special, numit *interpretor de comenzi*, care afișează pe ecran un prompter, primește comanda introdusă de la tastatură și o execută.

Sunt folosite mai ales pentru operații de administrare și aproape toate sistemele de operare includ o interfață în linie de comandă. Unele interfețe sunt foarte bine puse la punct (cazul sistemelor Unix), iar altele sunt destul de primitive (DOS și Windows).

📾 Command Prompt						
Microsoft Windo (C) Copyright 1	ws XP [Version 5 985-2001 Microso	5.1.2600] ft Corp.				
C:\Documents an Volume in driv Volume Serial	d Settings\defau e C has no labe] Number is 07D0-0	lt>dir∕p Â0D				
Directory of C	:\Documents and	Settings\default				
	53 AM (DIR)					
02/12/2002 10: 02/12/2002 10: 02/12/2002 10:	21 AM (DIR)	My Documents Equippitar				
02/12/2002 09: 02/12/2002 09:	35 AM (DIR)	Desktop Start Monu				
02/14/2002 09:	45 PM (DIR)	WINDOWS				
	7 Dir(s) 11,026	,939,904 bytes free				
C:\Documents an	d Settings\defau	lt>_				

Interfețe grafice (Graphical User Interface sau GUI) – este un sistem de interacțiune bazat pe ferestre, icon-uri, meniuri etc. Avantajul este ușurința în utilizare.

Interfețele grafice sunt cele mai uzuale, fiind foarte ușor de utilizat chiar și de către utilizatorii începători, cu puține cunoștințe tehnice.

Vom discuta în continuare despre principalele elemente ale unei interfețe grafice.

QOLL

34 SISTEME DE OPERARE
Ecranul calculatorului poartă numele de *suprafață de lucru (Desktop)*; pe această suprafață se pot actiona și manevra cu ușurință obiectele.

Principalele elemente ale interfetei sunt:

- 🖖 Cursorul (pointer-ul) indică poziția curentă a mouse-ului; este în general o săgeată albă cu contur negru, orientată spre stânga-sus, care se deplaseaza o dată cu mișcarea mouse-ului.
- **Fereastra (window)** este un dreptunghi afisat pe ecran care dispune de elemente caracteristice pentru executarea unor operații și pentru manipularea ei.

Fereastra este compusă din următoarele elemente:

- bara de titlu (**Title Bar**) care conține:
 - titlul ferestrei/documentului:
 - butonul de minimizare (**Minimize button**);
 - butonul de maximizare (**Maximize button**);
 - butonul de restaurare (**Restore button**);
 - butonul de închidere (**Close button**);
- bara de meniuri (**Menu Bar**):
- bara de derulare pe verticală și bara de derulare pe orizontală (scroll bar); acestea mai contin si butoane cu săgeti (scroll **arrow**) si cursoare mobile (**scroll box**);
- bara de stare (**Status Bar**);
- suprafața de lucru (**Working area**).

La unele aplicații, cum ar fi, de exemplu, aplicațiile din pachetul Office, bara de meniuri este înlocuită de panglică (**Ribbon**), care conține bara de instrumente (Tools Bar)

Prima interfață grafică ce folosea ferestre și meniuri a fost PARC.

> Cel mai răspândit sistem de operare pentru mobile este Android. Acesta este un sistem de operare open-source, adică oricine poate avea acces la codul sursă și îl poate modifica și dezvolta. Android a fost creat de Andrew Rubin, un programator, inginer și antreprenor american.

- Pictogramele (icons) sunt simboluri utilizate pentru a reprezenta grafic scopul şi/sau funcția unei aplicații sau fişier. Aplicațiile proiectate pentru mediu sau sistem de operare apar, de obicei, cu pictograme speciale, care descriu emblema producătorului sau a produsului.
- Meniul este o listă de operații pe care calculatorul le poate executa. Meniul poate fi activat (permite accesul la opțiuni) sau dezactivat (nu permite accesul la opțiuni); când este dezactivat, este scris cu o culoare mai deschisă.

Aplicații

- I. Răspundeți la următoarele întrebări:
 - 1. Care sunt tipurile de interfețe ale sistemului de operare pe care le cunoașteți? Scrieți două caracteristici ale lor.
 - 2. Care sunt principalele elemente ale interfeței grafice a sistemului de operare Windows?
 - 3. Enumerați trei sisteme de operare.
 - 4. Scrieți 3 asemănări și 3 deosebiri ale interfețelor grafice de la două sisteme de operare pe care le cunoașteți.

II. Completați spațiile punctate:

- 1. O listă de operații pe care calculatorul le poate executa se numește
- 2. Elementele grafice care descriu emblema producătorului sau a produsului se numește
- 3. Cel mai răspândit sistem de operare pentru mobile este
- 4. Prima interfață grafică ce folosea ferestre și meniuri a fost
- III. Scrieți pe desen elementele unei ferestre Windows.

DOLLO

000001	COOT roorororo	10000
11001	0110100010101	
Test de evaluare		
1. Închiderea ferestrei active se poate fac	e folosind tasta sau combinația de taste:	
a. Alt + F4;	c. Ctrl + Alt + Delete;	
b. Alt + F5;	d. Ctrl + Alt + Esc.	1
2. Pentru a comuta între ferestrele aplica	țiilor lansate în execuție la un moment dat, se	utilizează
combinația de taste:	c Ctrl + Enter	
b. Alt + Enter:	d. Ctrl + Tab.	
		1 punct
3. Ce reprezintă acronimul USB?		
a. Unit Serial Basic;	c. Universal System Bus;	
D. Unit Senai Bus;	a. Oniversal Senai Bus.	1 nunct
4. Scanerul are rolul de a:		i punce
a. tipări fișiere;	c. prelua imagini, text;	
b. scana calculatorul;	d. copia fișiere.	
5. Caro dintro următoarolo funcții nu oste	o specifică sistemului de operare Windows?	1 punct
a. coordonarea si controlul activit	tătii calculatorului:	
b. gestiunea resurselor logice;	,,	
c. interfața om–calculator;		
d. navigarea pe Internet.		1 punct
6. Care dintre următoarele relații este ade	evărată?	
a. 100KB < 1MB < 1000KB;	c. 1KB < 1GB < 1MB;	
b. 10KB < 100MB < 1GB;	d. 1MB < 100KB < 1GB.	
		1 punct
7. Care dintre urmatoarele combinații est	te cea care conține doar exemple de memorii i	nterne?
b. RAM, CD-ROM;	d. CD. CD-ROM.	
		1 punct
8. Resursele unui calculator sunt gestion	ate de:	
a. DVD;	c. placa de bază;	
b. memoria cache;	a. sistemul de operare.	1 nunct
		i punci

Se acordă 2 puncte din oficiu

Interfața cu utilizatorul este formată din totalitatea mijloacelor prin care utilizatorii interacționează cu calculatorul, cu un dispozitiv periferic sau cu un program. Prin intermediul interfeței, utilizatorii introduc date și primesc răspunsuri, adică interacționează cu sistemul.

În această lecție vom vedea cum sunt organizate datele pe suport extern, folosind fișiere și foldere dispuse într-o structură arborescentă.

Inițial, atunci când a fost creat primul sistem de operare pentru PC-uri (MS DOS) de către Microsoft, s-a considerat că sunt suficiente cel mult 8 caractere pentru numele fişierului şi cel mult 3 caractere pentru extensia sa.

Odată cu dezvoltarea sistemului de operare Windows, s-a mărit numărul de caractere pe care îl poate avea numele, respectiv extensia unui fișier.

Organizarea datelor pe suport extern

Fișiere

Din punct de vedere informatic, un *fișier* este o colecție omogenă de date, folosite în același scop, depozitate pe un dispozitiv de stocare (hard disk, CD, DVD, stick de memorie etc.). *Fișierul* este unitatea de bază pentru organizarea informației pe discurile calculatorului. În funcție de informația pe care o conțin, fișierele pot fi: texte, imagini, melodii, filme, programe etc.

Tipuri de fișiere

• fișiere de date – fișiere create sau aduse de utilizator (fișiere text, document, prezentare, audio, video etc.)

• fișiere de aplicație – fișiere create de aplicațiile instalate de către utilizator

• fișiere sistem – fișiere proprii sistemului de operare

Nume de fișiere

Orice fișier se prezintă sub forma:

nume.extensie

unde

nume reprezintă numele fișierului **extensia** indică tipul fișierului.

Restricții: numele fișierului poate conține cel mult **255** de caractere, mai puțin caracterele: \ / : * ? " < > |

Exemple de extensii de fișiere:

• Fișiere audio	• Fișiere executabile
.wav	.bat
.mp3 sau .mp4	.exe
• Fișiere grafice	.com
.gif	 Fişiere arhivă
.jpg sau .jpeg	.zip
.png	.rar
.tif sau .tiff	

• Fișiere documente

- .doc sau .docx (format al fișierelor Microsoft Word)
- .ppt sau .pptx (format al fișierelor PowerPoint)
- .txt (format text)

Foldere

Folderul (director sau *dosar)* este o colecție de fișiere și/sau de alte foldere. Cu ajutorul folderelor putem grupa informațiile, astfel încât acestea să poată fi accesate ușor. De aceea, folderul poate fi comparat cu un biblioraft pe care îl folosim la arhivarea diverselor documente.

IGOLLE

În Windows folderele au o pictogramă specială asemănătoare unui dosar. În imaginea de mai jos se pot vedea pictogramele a două foldere (*MinGW* și *Share*) și a 6 fișiere.

Numele unui folder respectă aceleași restricții ca și numele fișierelor.

Atât fișierele, cât și folderele, conțin informații referitoare la data la care au fost create, tipul și dimensiunea lor. Aceste informații pot fi vizualizate dând clic dreapta pe folderul sau fișierul respectiv și alegând opțiunea **Properties**. Se va deschide o fereastră asemănătoare celei din imaginea alăturată.

Fișierele și folderele sunt organizate într-o *structură arborescentă*. În această structură, locația fiecărui fișier și folder este exprimată prin *cale* (*path*). Aceasta indică traseul care trebuie urmat în ierarhia de directoare pentru a ajunge la fișierul dorit. Fiecare nivel ierarhic al folderelor se marchează prin utilizarea simbolului $\$ (backslash).

Calea către fișierul **Fisiere.docx** din structura de directoare alăturată o putem exprima astfel:

Exemplu\Fisierele_mele\Resurse\Fisiere.docx

100,100,1

Atât la fișiere, cât și la foldere, numele poate fi schimbat executând clic dreapta pe iconul fișierului sau folderului și accesând opțiunea **Rename.**

RETINETI!

	screenshot1.png	
ype of file:	PNG File (png)	
pens with:	Photos	Change
ocation	C:\Users\carme\Desktop\Manual	cls V-a\fisiere-folde
ize:	90.0 KB (92.205 bytes)	
ize on disk:	92.0 KB (94.208 bytes)	
reated.	Today, 21 mai 2017, 4 minutes ago	0
lodified	Today, 21 mai 2017, 4 minutes ago	ri.
ccessed	Today, 21 mai 2017, 4 minutes ago	š
äributes:	Read-only Hidden	Advanced.

1. Menționați un utilitar al sistemului de operare Windows care vă permite salvarea fișierelor la care ați lucrat în format: **bmp, jpeg, png** sau **gif**.

2. Formatul implicit al extensiei fișierelor salvate cu Notepad este _____

Operații cu fișiere și directoare

VOM ÎNVĂȚA DESPRE...

Să vedem cum putem crea, copia sau șterge unul sau mai multe fișiere sau foldere.

ATENȚIE

Nu folosiți același nume pentru două sau mai multe fișiere și/ sau foldere.

Nu ștergeți un folder sau un fișier până nu sunteți sigur că nu mai aveți nevoie de el.

Folosiți nume de fișiere care să ajute la identificarea conținutului.

Faceți copii de rezervă a fișierelor sau folderelor la care lucrați, pentru a putea recupera conținutul acestora. Pentru gestionarea fișierelor și directoarelor (folderelor) de pe calculator, sistemul de operare Windows ne oferă o aplicație numită *Windows Explorer*. Această aplicație poate fi lansată în mai multe moduri:

- clic dreapta pe **Start**, iar apoi pe **Open Windows Explorer**;
- tasta **Windows** + **E**;
- urmând calea **Start | All Programs | Accessories | Windows Explorer**.

Crearea unui folder

Se selectează în partea stângă a ferestrei *Windows Explorer* folderul în care dorim să creăm noul folder. Apoi, în panoul din partea dreaptă se dă clic dreapta, iar din meniul ce apare se va alege opțiunea **New** \rightarrow **Folder**. Va apărea iconița de folder și se va introduce numele dorit pentru folder.

Selectarea fișierelor sau a folderelor

Uneori dorim să efectuăm o operație asupra mai multor fișiere și/ sau foldere. Pentru aceasta, va trebui mai întâi să le selectăm.

- O posibilitate de selectare a mai multor fișiere și/sau foldere este de a încadra aceste fișiere/foldere într-un dreptunghi, ținând butonul stâng al mouse-ului apăsat.
- Dacă dorim selectarea "pe sărite" a fișierelor/folderelor, le selectăm pe rând ținând apăsată tasta **Ctrl** și dând clic pe ele.

Copierea fișierelor sau a folderelor

Se selectează fișierele/folderele pe care dorim să le copiem în altă parte și executăm clic dreapta pe unul din fișierele/folderele selectate. Selectăm opțiunea **Copy (Ctrl+C)**, după care ne poziționăm în locul în care dorim să realizăm respectiva copie și executăm clic dreapta selectând opțiunea **Paste (Ctrl+V)**.

Mutarea fișierelor sau a folderelor

Pentru mutarea fișierelor/folderelor se procedează asemănător, cu deosebirea că, în loc să alegem opțiunea **Copy**, vom alege opțiunea **Cut (Ctrl+X)**.

Ștergerea fișierelor sau a folderelor

Se selectează fișierele și directoarele pe care dorim să le ștergem, apoi executăm clic dreapta pe unul dintre ele și selectăm opțiunea **Delete** sau acționăm tasta **Delete**. Fișierele șterse în acest mod pot fi recuperate din *Recycle Bin* (*Coșul de Reciclare*) aflat pe *Desktop*.

Indetta

Aplicații

- a. Creați un folder numit **Test**.
- b. Creați două subfoldere ale folderului **Test**, numite Liliac și Panseluta.
- c. În folderul **Panseluta** creați un subfolder numit **Trandafir**.
- d. Mutați folderul Liliac în folderul Trandafir.

100,100,100

Test de evaluare

Răspundeți corect:	
 Folderul este: a. un set de instrucțiuni; b. o modalitate de grupare a informațiilor; c. o metodă de calcul; d. o aplicație. 	
2. txt, doc, jpg și exe sunt exemple de	CL
 1 pun 3. Ce reprezintă calea de acces relativă pentru un fișier? a. șirul de directoare pornind de la fișierul curent; b. șirul de directoare pornind de la directorul rădăcină; c. șirul de denumiri și extensii de fișiere. 1 pun 	ct
 4. Cine indică tipul unui fișier ? a. extensia fișierului; b. modul în care informația este stocată într-un fișier, astfel încât programul să poată salva acel fișier; c. numele fișierului; d. pictograma asociată fișierului. 	și
5. Extensia .exe este specifică: 1 pun a. fișierelor video; 5. Extensia .exe este specifică: b. fișierelor de tip text sau document; 1 pun c. fișierelor executabile; 1 pun d. fișierelor audio. 1 pun	ct
6. Ce reprezintă <i>Windows Explorer</i> ?	Cl
<i>1 pun</i> 7. Explicați cum se realizează copierea unui fișier.	Ct
1 pun Se acordă 3 puncte din ofici	ct u.

.....

100

مری INTERNET

🕽 VOM ÎNVĂȚA DESPRE...

În această lecție vom învăța câteva noțiuni despre rețele de calculatoare, Internet și despre serviciile pe care le oferă Internetul.

▶ În 1969 s-a finalizat, în SUA, proiectul ARPANET, considerat precursor al Internetului. Reţeaua conecta calculatoarele din patru universităţi americane: Institutul de Cercetări Stanford, Universitatea Utah, Universitatea California din Los Angeles şi Universitatea California din Santa Barbara.

În România, începând cu 1970, demarează proiectul RENAC (Reţeaua Naţională de Calculatoare) / RENOD (Reţeaua Nodală de Comunicaţii) pentru construirea unei reţele la nivel naţional. Proiectul a fost finalizat la sfârşitul anului 1983. Înainte de a porni în studierea rețelelor de calculatoare și a Internetului, ar trebui să cunoaștem câteva noțiuni importante.

Rețeaua de calculatoare este formată dintr-un grup de două sau mai multe calculatoare, interconectate, care comunică între ele în scopul partajării informației.

Calculatoarele și dispozitivele din rețea comunică între ele pe baza unui set de reguli, numit *protocol*. Toate sistemele de operare utilizează un Protocol de Control al Transmisiei/Protocol Internet (TCP / IP)

Avantajele lucrului în rețea

- partajarea fișierelor;
- folosirea resurselor de rețea (exemplu: imprimanta de rețea);
- accesul la Internet.

Pentru a se conecta în rețea, fiecare calculator trebuie să aibă o *placă de rețea* care asigură, prin cablu sau prin unde radio (*wireless*), legătura cu celelalte calculatoare sau dispozitive din respectiva rețea.

Tipuri de rețele de calculatoare

În funcție de aria de răspândire, se definesc următoarele rețele:

- rețele locale (LAN Local Area Network) lucrează la nivelul unei clădiri sau al unui grup de clădiri.
- rețelele metropolitane (MAN Metropolitan Area Network) – sunt răspândite, de obicei, la un întreg oraș sau chiar o întreagă zonă urbană. Aceste rețele folosesc, cel mai des, tehnologia fără fir (wireless) sau fibra optică pentru a crea conexiuni.

00

rețele de arie largă (WAN – Wide Area Network) – conectează orașe, regiuni sau țări. Pentru conexiuni se folosesc linii telefonice închiriate, fibra optică, transmisiuni prin satelit.

TCP/IP este protocolul standard, atât pentru rețelele LAN cât și WAN, fiind necesar pentru accesul la Internet.

Servicii în Internet

Câteva dintre serviciile accesibile în Internet:

- WWW (World Wide Web) sau web reprezintă totalitatea site-urilor/documentelor și informațiilor de tip hipertext, legate între ele, care pot fi accesate prin Internet (prin hipertext se înțelege un text cu legături către alte texte, imagini, sunete, filme).
- **Poșta electronică (e-mail)** permite trimiterea/primirea de scrisori în format electronic.

Poșta electronică este folosită în realizarea de comunicări în care nu se așteaptă un răspuns instant. Ea oferă posibilitatea realizării comunicării între mai multe persoane. La mesajele text se pot atașa diverse fișiere.

O adresă de e-mail are structura: **a@b.c** unde:

a – este numele cutiei poștale (de exemplu numele vostru);

b – reprezintă numele organizației care deține serverul de e-mail, de exemplu: *yahoo, outlook, gmail;*

c – este tipul de domeniu (*com, edu* etc.) sau codul de țară (de exemplu *ro* pentru România).

- **FTP (File Transfer Protocol)** este protocolul utilizat în mod obișnuit pentru schimbul de fișiere prin Internet.
- **Mesajele instant (IM sau chat)** oferă posibilitatea efectuării de conversații în timp real, între două sau mai multe persoane; La ora actuală, chat-ul este realizat ori direct în browser, ori cu ajutorul unui program sau protocol special.
- VoIP (Voice Over Internet Protocol) telefonie via Internet permite efectuarea unui apel VoIP printr-o aplicație de telefonie de pe calculator, utilizând o pereche de căști și un microfon;
- **Posturile de radio și TV prin Internet** permit urmărirea unor posturi de radio și TV folosind Internetul;
- **Comerțul electronic (e-commerce)** este un serviciu care vă oferă, printre altele, posibilitatea efectuării de cumpărături accesând magazine virtuale.

100,100,1

▶ În anul 1989, cercetătorul britanic Tim Berners-Lee, în timp ce lucra ca inginer de software la CERN (Organizația Europeană pentru Cercetări Nucleare) din Geneva, a creat World Wide Web prin unirea hipertextului cu Internetul. Din anul 1994, Tim Berners-Lee este directorul World Wide Web Consortium (W3C), care creează tehnologii pentru a dezvolta Web-ul.

Exemple de furnizori de servicii de e-mail:

- 🗸 Yahoo (Yahoo Mail)
- Microsoft (Outlook)
- ✓ Google (Gmail)

etc.

Exemple de programe sau protocoale speciale cu care este realizat chat-ul:

- ✓ AOL Instant Messenger (AIM)
- ✓ Google Talk
- Internet Relay Chat (IRC)
- 🗸 Skype
- ✓ Windows Live Messenger
- ✓ Yahoo! Messenger
- 🗸 Whats App

etc.

Exemple de navigatoare: ✓ Microsoft Internet Explorer ✓ Google Chrome ✓ Mozilla Firefox ✓ Opera ✓ Apple Safari

etc.

World Wide Web-ul (www) a fost creat pentru ca oamenii din întreaga lume să comunice între ei. În doar patru ani acesta a adunat un număr de 50 de milioane de utilizatori. Radioului i-au trebuit 38 de ani să ajungă la acelaşi număr de utilizatori, în timp ce televiziunii i-au trebuit 13 ani.

Dintre motoarele de căutare folosite astăzi, amintim:

- ✓ Yahoo creat în 1994
- ✓ Google creat în 1997
- ✓ Bing creat în 2004
- 🗸 Baidu creat în 2000

Căutarea informațiilor în Internet

Pentru a găsi informațiile pe care le dorim în rețeaua Internet, avem nevoie de un browser și de un motor de căutare.

Un *navigator* sau un *browser* este un program (o aplicație software) care permite utilizatorilor să afișeze text, grafică, video, muzică și alte informații situate pe o pagină din WWW, dar și să comunice cu furnizorul de informații și chiar să comunice între ei.

Adrese web

Fiecare pagină web are o adresă specifică, numită *URL (Uniform Resource Locator)*, de forma

identificator_de_protocol://numele_resursei

unde:

- identificator de protocol poate fi, de exemplu, http, https, ftp
- numele resursei poate fi de forma

subdomeniu.domeniu_secundar.domeniu_de_top

De exemplu, pentru **www.edu.ro**:

- subdomeniu www
- domeniu_secundar **edu**
- domeniu_top **ro** (poate fi domeniul *com, edu* etc sau de țară, în cazul de față *ro* pentru România.

Motoare de căutare

Un *motor de căutare* este un program care accesează Internetul și care reține titlul, cuvintele cheie și, parțial, conținutul paginilor web, într-o colecție de date. În momentul în care căutăm prin intermediul unui motor de căutare o anumită informație, motorul va afișa o listă cu adresele site-urilor care conțin date despre informația solicitată, listă extrasă din colecția de date.

Salvarea datelor de pe Internet

Uneori dorim să salvăm anumite pagini sau imagini pe care le-am găsit pe Internet sau adresa unde găsim aceste informații.

Pentru a salva o imagine de pe Internet, cea mai simplă metodă este să dăm clic dreapta pe imagine și să alegem din meniul contextual opțiunea **Save Image As.**

Dacă însă dorim salvarea întregii pagini web, vom selecta din meniul **File**, opțiunea **Save As.../Save Page As...** (în funcție de browser-ul folosit) sau folosim combinația de taste **Ctrl+S**, iar apoi directorul unde dorim să salvăm pagina. În partea de jos a căsuței de dialog **Save As** putem alege modul de salvare:

100LLD

• Web Page, complete – permite salvarea întregii pagini html, inclusiv imaginile și alte fișiere suport.

• Web Page, HTML only – va salva pagina în forma originală, cu excepția imaginilor.

• **Text Files** – va salva doar textul, fără formatările html, fără link-uri și fără imagini.

Dacă dorim să salvăm doar adresa unde se găsește pagina, pentru a putea reveni la ea, putem folosi facilitățile din browser:

• Meniul **Bookmarks**, opțiunea **Bookmark This Page**, la *Mozilla Firefox* sau *Chrome*.

• Meniul **Favorites**, opțiunea **Add to Favorites**, sau **Add to Favorites bar**, la *Internet Explorer*

Pentru a activa bara de meniuri, indiferent de browser, apăsați tasta $\ensuremath{\textbf{F10}}$.

Reguli de comportare pe Internet

- La redactarea unui mesaj nu folosiți majuscule în exces. Un text scris cu majuscule pare a fi un text spus cu voce ridicată, neprietenoasă.
- Nu divulgați niciodată, via Internet, date (nume, adresă, parole, școala unde învățați, date despre părinți) sau imagini cu caracter personal.
- Nu intrați în discuții cu persoane care nu vă sunt cunoscute.
- Evitați în mesajele voastre afirmații neadevărate sau răuvoitoare la adresa altor persoane.
- Evitați scrierea de mesaje folosind în exces prescurtări sau acronime. Acest lucru semnalează o lipsă de educație, caracter și respect față de cel căruia vă adresați.
- Nu vă întâlniți niciodată cu o persoană cunoscută pe Internet, decât dacă vă însoțește un adult de încredere.
- Nu toate informațiile de pe Internet sunt adevărate sau potrivite vârstei voastre. Intrați pe site-uri sigure și verificați informațiile cu părinții sau profesorii voștri.

Drepturi de autor

Unele informații, cărți, melodii, filme de pe Internet sunt protejate de legi împotriva folosirii acestora în mod neautorizat. În cazul în care dorim să realizăm un referat care să conțină informații din Internet, la finalul acestui referat, la bibliografie, se va cita sursa originală. Nu copiați referatele sau lucrările altor persoane! Nu copiați și nici nu distribuiți filme, melodii, jocuri!

100,100,1

Prima unealtă de căutare pe Internet a fost Archie, realizată în 1990 de trei studenți de la Universitatea din Montreal, Canada.

Cuvântul Internet (format prin unirea a două cuvinte: IN-TER de la interconnected = interconectat şi NET de la network = rețea) desemnează rețeaua mondială de calculatoare şi alte aparate, interconectate conform unor reguli de comunicare, numite protocoale.

Calculatorul nu va fi afectat de viruşi prin simpla deschidere a unui e-mail. Virusarea se poate face doar atunci când deschideți un fişier ataşat la e-mail, sau când dați clic pe un link din e-mail.

Primul site ce a fost publicat pe Internet a fost info.cern.
 ch, creat de Tim Berners-Lee, cercetător la CERN.

Dacă introduceți în bara de adrese din browser numele unui domeniu şi tastați combinația Ctrl + Enter se va adăuga automat la acesta http://www. la început şi extensia .com la sfârşit.

2. Afirmația "pot copia orice melodie din Internet și să o dau și prietenilor mei" este corectă? Motivați răspunsul.

- **3.** Prin Internet înțelegeți:
 - a. rețeaua de calculatoare din școala voastră;
 - b. rețeaua de calculatoare din orașul nostru;
 - c. rețeaua mondială de calculatoare și alte aparate;
 - d. rețeaua mondială de calculatoare și alte aparate interconectate conform unor reguli (protocoale) de comunicare.
- 4. WWW este:
 - a. o adresă din Internet;
 - b. o rețea de calculatoare;
 - c. un serviciu disponibil în Internet;
 - d. un serviciu disponibil pentru o marcă de mașini.

5. Completați spațiul gol din afirmația: "Fiecare pagină web are o ______ specifică, numită URL"

6. Am cunoscut prin intermediul Internetului o persoană care pare simpatică. Aceasta mi-a cerut o întâlnire. Cum mă duc îmbrăcat(ă) la această întâlnire? Motivați răspunsul.

Test de evaluare

Acest test nu are rolul propriu-zis de a vă evalua cunoștințele, ci, mai degrabă, să vă facă să vă gândiți mai serios la siguranța voastră pe Internet și cum ar trebui să vă protejați în mediul virtual!

Răspundeți cu adevărat sau fals:

1. Dacă ați găsit o informație pe Internet, aceasta sigur este corectă!

a. Adevărat

b. Fals

IGOLLE

2. În partea de sus a acestei pagini de Internet se găsește logo-ul Poliției Române, așa că în mod sigur este un site de încredere.

a. Adevărat b. Fals

3. Părinții mei au primit un e-mail de la bancă prin care li se solicită anumite date privind contul lor. Pot să răspundă liniștiți acestei solicitări, deoarece vine din partea băncii.

a. Adevărat

b. Fals

4. Trebuie să fiu întotdeauna sceptic dacă o informație am găsit-o pe Internet!

a. Adevărat

b. Fals

5. Poți întotdeauna naviga anonim pe Internet, făcând astfel dificil pentru oricine să monitorizeze comportamentul tău pe Internet și să afle cine ești.

a. Adevărat b. Fals

o. Fals

- 6. E posibil ca unele site-uri să-mi solicite parola printr-un e-mail?
 - a. Adevărat

b. Fals

- 7. Informațiile pe care le postați pe Internet pot fi întotdeauna șterse?
 - a. Adevărat
 - b. Fals
- 8. Poate fi periculos să faceți publică locația voastră de pe telefon?
 - a. Adevărat
 - b. Fals
- 9. Nu este nicio problemă să postez poze cu mine pe Internet?
 - a. Adevărat b. Fals
- 10. Se poate raporta un abuz pe Internet?
 - a. Adevărat
 - b. Fals
- 11. Care dintre următoarele variante este un exemplu bun de parolă?

a. parola

- b. Ac3astaEste0bun1par0la!
- c. aceastaesteobunaparola

100,100,1000

d. 2017ParolaMea

- **12.** Dacă o persoană pe care ai cunoscut-o pe Internet îți cere să vă vedeți în realitate, cum trebuie să procedezi?
 - a. Te duci la întâlnire dacă este într-un loc public;
 - b. Te duci la întâlnire împreună cu o prietenă;
 - c. Te duci la întâlnire însoțit de unul dintre părinți sau alt adult din familie;
 - d. Te duci la întâlnire singur.
- 13. Dacă vezi ceva pe calculator ce te face să nu te simți confortabil cum ar trebui să procedezi?
 - a. Ignori ceea ce te-a deranjat.
 - b. Închizi calculatorul.
 - c. Închizi calculatorul și îi spui unui prieten ce ai văzut.
 - d. Anunți imediat un adult.
- 14. Enumeră 5 informații pe care nu ar trebui să le împărtășești niciodată cuiva de pe Internet.

1	
2	
3	
4	
5	

- **15.** Tocmai ai comentat la o postare pe Facebook a Mariei. Cine poate vedea comentariul tău? a. Maria:
 - b. Maria și prietenii Mariei;
 - c. Maria, prietenii Mariei și prietenii tăi;
 - d. Maria, prietenii Mariei, prietenii tăi și prietenii prietenilor Mariei;
 - e. Maria și prietenii tăi.
- **16.** În ce situație nu este nicio problemă să memorezi numele de utilizator și parola pe calculator pentru a te putea conecta mai ușor?
 - a. la magazinul unde faci frecvent cumpărăturile;
 - b. la biblioteca școlii;
 - c. în laboratorul de la școală în care lucrezi întotdeauna;
 - d. acasă la cel mai bun prieten al tău;
 - e. în niciuna dintre aceste situații.
- Ce trebuie să faci ca să oprești o persoană din lista ta de messenger să mai comunice cu tine?
 a. o ignori;
 - b. o cauți în viața reală ca să vezi ce are cu tine;
 - c. o să le spui colegilor tăi;
 - d. o suni pe telefonul mobil.
- **18.** Ce buton apeși ca să nu mai primești e-mailuri nesolicitate și deranjante?

.....

I DOLLO

19. A pretinde pe Internet că ești altă persoană decât în realitate este:

- a. o glumă bună;
- b. ilegal;
- c. incitant;
- d. permis doar în situații speciale.

20. Asociați cuvintelor din coloana A, descrierea corespunzătoare din coloana B

Coloana A	Coloana B
1. Browser	a. fraudă online
2. Adware	b. mesaj nesolicitat
3. Phishing	c. securizare
4. Spyware	d. 92.125.18.132
5. Spam	e. pretinde a fi ceva bun
6. Malware	f. Chrome
7. IP	g. program destructiv
8. Troian	h. adună informații
9. Criptare	i. anunțuri

100,100,100,000

Conform unor studii ale Organizației Salvați Copiii, majoritatea copiilor din România accesează Internetul zilnic sau aproape zilnic și aproximativ 90% dintre aceștia afirmă că folosesc cel puțin o rețea de socializare. În mediul virtual, copiii sunt expuși mereu la multe fenomene nedorite.

Dacă navigând pe Internet te simți agresat în vreun fel, ai îndoieli sau temeri, discută fără reținere cu părinții sau profesorii tăi.

Dacă vrei să afli mai multe despre acest subiect, o bună resursă este site-ul https://oradenet.salvaticopiii.ro.

SEDITOARE GRAFICE

În același timp cu sistemul de operare Windows, se instalează implicit o serie de mici aplicații utile. Despre una dintre ele vom învăța în această lecție.

Paint

Paint este un accesoriu al *sistemului de operare Windows*, putând fi folosit pentru crearea, prelucrarea, tipărirea și salvarea imaginilor. Imaginile create cu *Paint* pot fi incluse în alte fișiere, de exemplu în cele create cu *MS Word*.

Există mai multe căi pentru accesarea aplicației Paint:

• folosim calea:

Butonul Start | All Programs | Accessories | Paint;

• clic pe **Butonul Start**, scriem în **Fereastra de Căutare Paint** și apăsăm tasta **Enter**.

DO LEOO

Interfața aplicației Paint

Să studiem, mai în detaliu, elementele prezentate mai sus:

Bara Instrumente Acces Rapid – conține, inițial, trei butoane care permit:

- salvarea desenului;
- anularea ultimei comenzi;
- revenirea la comanda anulată.

În partea dreaptă se găsește o săgeată care ne permite să setăm și alte comenzi pe această bară.

Observație. Există mai multe moduri de a salva un desen, în funcție de rezoluția/calitatea pe care dorim să o aibă produsul. O ierarhizare a calității imaginii salvate, de la rezoluția/calitatea cea mai bună la rezoluția/calitatea cea mai slabă, este: **png, jpeg, bmp, gif.**

100,100,1

🔖 **Fila Home** – este alcătuită din mai multe grupuri:

Srupul Tools

rea respectivei culori

Observație. Pentru a umple o porțiune din desen cu o culoare, aceasta trebuie să fie un contur închis. În caz contrar culoarea se va scurge în afara zonei.

100LLOOL

& Grupul Shapes

Shapes – oferă posibilitatea folosirii pensulei pentru a trasa diverse tipuri de urme și posibilitatea setării grosimii și culorii acestora

Fill – după selectarea formei predefinite pe care dorim să o utilizăm, putem seta tipul de umplere al formei, culoarea și grosimea acesteia

U Grupul Colors

- **ȘTIAȚI CĂ?**
- Pentru a desena un cerc sau un pătrat puteti folosi, după selectarea respectivei forme, tasta Shift.
- ≻ După trasarea unei forme, aceasta poate fi deformată folosindu-ne de cele 8 puncte de deformare din ea.
- ➢ Forma predefinită linie curbă poate fi "modelată" executând clic pe ea și deplasând mouse-ul.
- Puteți umple cu o culoare dorită o porțiune din desenul dumneavoastră, urmând pași următori: a. alegeti unealta **Select**;

c. alegeți o culoare; d. apăsați tasta **Delete**.

100,100,1

b. dați clic pe Color 2;

Aplicații

1. Afirmația "Pentru a stabili culoarea cu care desenăm, folosim instrumentul **Creion**, executăm clic pe **Outline** din grupul **Shapes**, după care selectăm culoarea din **Colors**" este:

a. Adevărată

b. Falsă

2. Completați în afirmația următoare spațiul liber cu textul **Color 1** sau **Color 2**:

"Pentru a desena cu o anumită culoare folosind unealta **Creion** din grupul **Tools**, vom selecta _____ din grupul **Colors**."

3. Bifați răspunsul corect pentru afirmația "Un desen realizat în **Paint** se poate salva ca imagine de tipul":

a. □ PNG
b. □ JPEG
c. □ GIF
d. □ BMP

4. Explicați rolul uneltelor din grupul Tools.

5. Folosind numai uneltele Radieră, Grosime linie și Culoare, desenați steagul României.

6. Folosind o singură formă *triunghi*, de la **Shapes**, și un *dreptunghi*, desenați un brad. *Indicație:* trasați un triunghi, îl selectați și îl multiplicați de mai multe ori; fiecare triunghi va fi redimensionat.

Mini proiect

- 1. Desenați o vază cu flori așezată pe un suport oarecare. Cerințe:
 - a. Pentru desenarea corpului vazei, marginea stângă și dreaptă a ei, folosiți o singură dată unealta linie curbă și efectul de oglindire.
- b. Desenați o singură floare pe care apoi o multiplicați, o deformați și o recolorați (pentru a nu fi toate florile identice). Salvați desenul: **Vaza_Nume_Prenume.gif**

2. Desenați un peisaj de iarnă care să conțină: câțiva brazi, un deal, zăpadă. În funcție de fantezia fiecăruia, desenul poate conține și alte elemente. Salvați desenul: **Iarna_Nume_Prenume.gif**

INOLLOO

INFORMATICĂ

00100

مریک ALGORITMI

În prima parte a manualului am văzut din ce este compus un calculator și cum funcționează. Din păcate, calculatorul este doar o mașină, nu poate gândi singură. Are nevoie de noi pentru a funcționa. Trebuie să îi spunem pas cu pas ce trebuie să facă...

Cuvântul algoritm este o combinație a latinescului algorismus, provenind de la numele matematicianului persan din secolul al IX-lea, Al-Khwarizmi

și de la cuvântul grecesc *arithmos*, însemnând "număr".

O *instrucțiune* este o comandă de bază prin care îi transmitem calculatorului să facă o singură acțiune/operație.

Combinând mai multe instrucțiuni vom obține un *algoritm*. Așadar, prin *algoritm* vom înțelege o succesiune de operații care se efectuează de un număr finit de ori.

Să vedem un exemplu de algoritm din viața de zi cu zi:

Prepararea unei căni de ceai

Cum credeți că ar arăta un algoritm de preparare a unei cești de ceai? Pare foarte simplu, dar haideți să vedem:

Pasul 0: Start Pasul 1: Pornește aragazul Pasul 2: Ia un ibric din dulap Pasul 3: Umple ibricul cu apă Pasul 4: Pune ibricul cu apă la fiert Pasul 5: Ia un pliculeț de ceai și pune-l într-o cană Pasul 6: Când apa a fiert, oprește aragazul Pasul 7: Ia ibricul de pe aragaz Pasul 8: Toarnă apa fierbinte în cană, peste pliculețul de ceai Pasul 9: Așteaptă câteva minute până se va infuza ceaiul Pasul 10: Scoate pliculețul de ceai din cană Pasul 11: Servește ceaiul Pasul 12: Stop

Pare simplu, însă, dacă suntem atenți la acest algoritm, vom observa că nu este tocmai corect sau complet. Ce se întâmplă dacă nu mai avem pliculețe de ceai? Algoritmul în acest caz nu va funcționa, un robot care ar urma un astfel de algoritm nu va ști ce să facă. Dar dacă nu vrem ceai la pliculeț? Dar dacă e o pană de gaz? Etc.

Oricât de banal ar părea la prima vedere un algoritm din viața reală, este complicat să-l facem corect. Și rezolvarea unor probleme cu ajutorul calculatorului poate fi uneori foarte dificilă.

Revenind acum la definiția algoritmului, o vom completa astfel: Un algoritm este un set *finit* de instrucțiuni *neambigue* care se execută într-o *ordine bine precizată* pentru rezolvarea unei probleme.

Ce înseamnă oare că instrucțiunile trebuie să fie neambigue? Dacă ne uităm la algoritmul din exemplul de mai sus, pasul 5 de exemplu este ambiguu: de unde iau pliculețul de ceai? Ce fel de ceai? Dacă nu mai am ceai? etc. În programare nu avem voie să scriem instrucțiuni ambigue.

IDOLLE

Un algoritm trebuie să fie:

- **CLAR** trebuie să descrie precis, riguros, fără ambiguități toate acțiunile ce urmează a fi executate;
- **GENERAL** nu vom scrie niciodată un program care rezolvă o singură problemă concretă. De exemplu, nu vom scrie un program care adună numerele 2, 5, 18 și 42, vom scrie un program care adună oricâte numere introduse de la tastatură de utilizator.
- **EFICIENT** executarea unui algoritm urmărește obținerea unui anumit rezultat.
- **FINIT** orice algoritm trebuie să se încheie după un anumit număr de pași, altfel este inutil și poate duce chiar la blocarea calculatorului.

Odată proiectat un algoritm, acesta nu poate fi executat direct de către calculator. Acești algoritmi vor fi codificați într-un limbaj de programare, obținându-se un program pentru calculator. Aceste programe pot fi apoi traduse în limbajul binar pe care îl înțelege calculatorul.

În continuare vom învăța să creăm algoritmi folosind programul Scratch, acesta fiind un mediu foarte potrivit pentru copii și cu ajutorul căruia vom învăța elementele de bază ale programării.

ambiguu = care are mai multe înțelesuri; neclar; echivoc

Exemple de limbaje de programare:

Aplicații

00,00,

- Scrieți pașii unui algoritm folosit de un "robot chelner" care trebuie să ducă mâncarea la o masă a unui restaurant. Încercați să surprindeți cât mai detaliat orice situație pe care o poate întâlni robotul.
- 2. Intrați pe Internet la adresa http://lightbot.com/flash.html și încercați să rezolvați cât mai multe nivele ale jocului. Observați că, de fapt, descrieți niște algoritmi simpli pentru a aduce Lightbot-ul în pătratul albastru și pentru a aprinde lumina în acel pătrat.

În lecția trecută am exemplificat un algoritm din viața reală. Vom începe această lecție cu un algoritm ce va putea fi apoi rezolvat cu ajutorul calculatorului și vom analiza elementele care-l compun.

Am folosit aici o modalitate de reprezentare a algoritmilor în care am descris în cuvinte fiecare pas. Însă această modalitate nu este foarte utilă, deoarece este destul de departe de ceea ce înțelege un calculator. Din acest motiv, vom folosi în continuare un alt mod de reprezentare a algoritmilor și anume pseudocodul (pseudo = fals).

Pseudocodul este un limbaj apropiat limbajului nostru natural, dar care este totuși mai formalizat și mai apropiat de limbajul de programare în care vor fi transcriși mai târziu algoritmii.

Descrierea algoritmilor. Date cu care lucrează algoritmii

Problema 1 (Maximul a două numere)

Se dau două numere naturale **a** și **b** și trebuie să aflăm care dintre ele este mai mare.

Analiza problemei:

Mai întâi trebuie să stabilim datele de intrare ("ce se dă") și datele de ieșire ("ce se cere").

Date de intrare: cele două numere întregi, pe care le notăm cu **a** și **b**. **Date de ieșire:** cea mai mare dintre valorile celor două numere date, **a** și **b**. Vom nota această valoare cu **max**.

Algoritmul:

Pasul 0: Start Pasul 1: Citim de la tastatură primul număr, **a** Pasul 2: Citim de la tastatură al doilea număr, **b** Pasul 3: Dacă **a** este mai mare decât **b**, **max** primește valoarea lui **a**. Pasul 4: În caz contrar, **max** primește valoarea lui **b**. Pasul 5: Afișăm rezultatul pe ecran, **max** Pasul 6: Stop Algoritmul transcris în pseudocod: start citeste a, b dacă a>b atunci max←a altfel max←b sfârșit daca scrie max stop

Observăm câteva elemente pe care le vom întâlni aproape în toți algoritmii scriși în pseudocod:

- Orice algoritm începe cu instrucțiunea Start.
- Orice algoritm se termină cu instrucțiunea **Stop.**
- De obicei, vom avea cel puțin o instrucțiune **citește** prin care vom prelua de la tastatură valorile datelor de intrare.
- De obicei, vom avea cel puțin o instrucțiune **scrie** care va afișa pe ecran rezultatele prelucrărilor, adică valorile datelor de ieșire.

Problema 2

Se dau două numere naturale. Verificați dacă acestea sunt numere naturale consecutive (se va afișa un mesaj corespunzător).

Analiza problemei:

Date de intrare: cele două numere, pe care le vom nota **x** și **y**. **Date de ieșire:** mesajul **Da** sau **Nu**, după cum numerele sunt consecutive sau nu.

I GOLLO

sfârșit dacă

Observăm că, de această dată, avem mai multe instrucțiuni **scrie**. Observăm, de asemenea, că în ambii algoritmi am folosit nume pentru datele de intrare și/sau de ieșire (**a**, **b**, **max**, **x**, **y**). Algoritmii lucrează cu date, adică cu valori, care sunt reținute de variabile. La fiecare executare a algoritmului, variabilele pot reține valori diferite. Ba mai mult, putem modifica valorile reținute de variabile. Vom spune că aceste date sunt variabile. Într-un algoritm, la un moment dat, variabila poate avea o singură valoare. Modificarea valorii unei variabile se poate face prin operația de citire și prin operația de atribuire, despre care vom discuta. Într-un algoritm, însă, putem avea și valori care nu se modifică și care au aceeași valoare de fiecare dată când executăm algoritmul respectiv, ca de exemplu valoarea **1** sau mesajele **Da** și **Nu** din algoritmul anterior. Vom spune că aceste date se numesc *constante*.

Variabilele au întotdeauna un nume. Puteți numi o variabilă cum doriți (sau aproape cum doriți); numele poate fi oricât de lung și poate fi compus din litere și cifre, precum și caracterul "underscore" (liniuță de subliniere "_"). Există însă câteva reguli:

- Numele poate începe doar cu o literă sau cu caracterul "underscore", niciodată cu o cifră. De exemplu, **4you** nu poate fi nume de variabilă, însă **fun4you** sau **_4fun** sunt nume corecte.
- Numele nu pot conține spații.
- Numele sunt "case-sensitive", adică literele mari diferă de cele mici. De exemplu, variabila Alex este diferită de ALEX și de alex (această regulă este impusă de multe limbaje de programare, nu toate, și o vom impune și în acest manual).

Așadar, un algoritm lucrează cu date care pot fi clasificate astfel:

- variabile
- constante

🏷 După scop:

- date de intrare
- date de ieșire
- date intermediare, folosite în calcule

🏷 După natură:

- date numerice
- caracter
- șiruri de caractere

100

• logice

Asupra instrucțiunii **dacă** vom reveni într-o lecție viitoare, deci nu trebuie să vă faceți probleme dacă nu ați înțeles foarte bine cum funcționează.

> Limbajele de programare de nivel înalt pot fi clasificate în limbaje bazate pe text, în care algoritmii sunt descriși cu ajutorul unor instrucțiuni de tip text și limbaje de programare vizuale, în care programele sunt create cu ajutorul unor blocuri grafice interconectate.

În acest manual vom începe să studiem Scratch, un limbaj de programare vizual, extrem de simplu, special proiectat pentru copii.

Există peste 690 de limbaje de programare utilizate până în acest moment.

> Primul limbaj de programare de nivel înalt (apropiat de limbajul natural) a fost Fortran, inventat în 1954.

Am văzut deja în lecția trecută că algoritmii pot efectua diverse operații, precum calcule, comparații etc. Pentru aceste operații avem nevoie de operatori.

Simbolurile "+" şi "-" au fost introduse de către Nicole d'Oresme, un matematician francez ce a trăit între 1323-1382. El a utilizat simbolul "+" ca o prescurtare a latinescului "et", însemnând "şi", în lucrarea sa "Algorismus Proportionum".

Semnul "×" pentru înmulțire a fost introdus de către W. Oughtred în 1631, însă Leibniz l-a înlocuit cu semnul "·", din cauză că semnul de înmulțire "×" se confunda cu litera x. Tot Leibniz a introdus semnul ": " pentru împărțire în 1684.

Expresii

Expresia poate fi: • o constantă; • o variabilă; • un șir de constante sau variabile legate prin operatori; • o altă expresie între paranteze. După rezolvare, expresia poate avea un rezultat numeric sau unul logic.

Operatorii pe care îi vom folosi în pseudocod sunt:

♦ Operatorul de atribuire – acesta este operatorul notat în pseudocod cu ←.

De exemplu, în urma atribuirii $\mathbf{x} \leftarrow \mathbf{10}$ variabila \mathbf{x} va avea valoarea **10**, iar în urma atribuirii $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{5}$ la valoarea inițială a variabilei \mathbf{x} se adună valoarea **5** și rezultatul este atribuit variabilei \mathbf{x} .

Dacă, de exemplu, valoarea inițială a lui \mathbf{x} era $\mathbf{2}$, în urma acestei atribuiri \mathbf{x} va avea valoarea $\mathbf{7}$. Se observă că variabila are o nouă valoare, valoarea anterioară s-a pierdut. Operația de atribuire modifică valoarea variabilei și valoarea anterioară se pierde.

EXERCIȚII REZOLVATE:

Se dau două variabile, **x** și **y**, fiecare cu o valoare diferită de a celeilalte. Astfel, **x** are valoarea 2 și **y** are valoarea 3. Cum putem schimba valoarea lui **x** cu valoarea lui **y** și valoarea lui **y** cu valoarea lui **x**, astfel încât la final **x** să aibă valoarea 3 și **y** să aibă valoarea 2?

Rezolvare:

Imaginați-vă că cele două variabile sunt două pahare (paharul A și paharul B), iar conținutul paharelor reprezintă valorile variabilelor. Cum interschimbăm conținutul celor două pahare? Vom lua un al treilea pahar gol, C și golim conținutul paharului A în paharul C:

Acum, paharul A fiind gol, putem să golim conținutul paharului B în paharul A și, la final, să golim conținutul paharului C în paharul B:

Să scriem algoritmul corespunzător:

Paharul A Paharul B Paharul C

citește a,b c←a a←b b←c scrie a, b

DOLLO

Soperatori aritmetici – sunt operatorii pe care îi cunoașteți de la matematică și sunt reprezentati în algoritm prin următoarele caractere:

- * înmultire
- / împărtire
- + adunare
- scădere

La aceștia adăugăm doi operatori noi, și anume:

div = câtul împărțirii a două numere întregi

mod = restul împărțirii a două numere întregi

De exemplu, expresia **11/3** are valoarea reală **3.666**, expresia **11 div 3** are valoarea **3**, iar expresia **11 mod 3** are valoarea **2**.

Solution Operatori relaționali – sunt operatorii cu care comparăm două valori:

- < mai mic
- > mai mare
- <= mai mic sau egal
- >= mai mare sau egal
- = egal
- <> diferit

Soperatori logici – se folosesc în expresiile logice, adică acele expresii care au valoarea *true (adevărat)* sau *false (fals)*:

NOT – negația

- AND ȘI logic
- **OR** SAU logic.

Aceste operații sunt definite în următoarele tabele (am notat prescurtat T pentru true și F pentru false):

P	NOT P	P	Q	P and Q	P	Q	P or Q
Т	F	Т	Т	Т	Т	т	Т
F	Т	Т	F	F	Т	F	т
		F	Т	F	F	Т	Т
		F	F	F	F	F	F

Cu alte cuvinte, **P AND Q** este adevărată doar atunci când atât **P** cât și **Q** sunt adevărate, iar **P OR Q** este adevărată atunci când cel puțin una dintre expresiile **P** și **Q** sunt adevărate.

Matematicianul Augustus De Morgan a formulat două legi pentru expresiile care conțin operatori logici, numite și legile lui De Morgan: *Legea 1:* expresia **NOT (P AND Q)** este schivalentă cu expresia **NOT (P) OR NOT (Q)**

Legea 2: expresia **NOT (P OR Q)** este schivalentă cu expresia **NOT (P) AND NOT (Q)**

Pentru evaluarea expresiilor se respectă regulile de bază învățate la matematică. Se evaluează întâi expresiile dintre parantezele rotunde, apoi se execută operațiile în ordinea priorității lor. Dacă există operații cu aceeași prioritate, ele se execută în ordine, de la stânga la dreapta.

00,100

Operatorul / poate fi aplicat atât datelor de tip întreg, cât și celor de tip real, rezultatul fiind în general un număr real. Operatorii **DIV** și **MOD** se aplică doar datelor de tip întreg, iar rezultatul este întotdeauna un număr întreg.

REȚINEȚI!

Algebra booleană este ramura matematicii bazată pe propoziții care pot să fie adevărate sau false. Aceste propoziții se pot combina cu ajutorul operatorilor AND şi OR sau pot fi negate. Părintele algebrei booleene este matematicianul şi filozoful englez George Boole, născut în 2 noiembrie 1815.

Gerge Boole

Augustus De Morgan (1806–1871) Matematician britanic, celebru pentru contribuțiile sale în logica matematică, motiv pentru care este considerat întemeietorul logicii formale.

B OBSERVAȚIE:

Pentru scrierea expresiilor mai complicate nu se folosesc, ca la matematică, paranteze pătrate și acolade, ci se folosesc în locul acestora paranteze rotunde. De exemplu, expresia matematică:

{5×[4×3+2×(7+9)]} va fi scrisa la Informatică astfel: (5*(4*3+2*(7+9)))

Am putut efectua calculele în paralel în cele două expresii, deoarece ele nu depind una de alta și sunt "unite" de un operator de prioritate mai mică, ce va fi evaluat ulterior.

Prioritate	Operatori	Simbol
1 (cea mai mare)	Negația logică	NOT
2	Aritmetici multiplicativi	* / div mod
3	Aritmetici aditivi	+ -
4	Relaționali	< > <= >= = <>
5	SI logic	AND
6 (cea mai mică)	SAU logic	OR

Dacă **a** și **b** sunt două variabile care conțin valori numerice, atunci avem relațiile:

- 1. Expresia **NOT (a>b)** este echivalentă cu expresia **a≤b.**
- 2. Expresia **NOT (a≥b)** este echivalentă cu expresia **a<b.**

EXERCIȚII REZOLVATE:

1. Evaluați următoarea expresie:

(2+3^{*}(5-7div2))*3+2*3mod4

Rezolvare. Vom efectua mai întâi calculele din paranteze și vom ține cont de prioritatea operatorilor:

(2+3*(5-7div2))*3+2*3mod4= (2+3*(5-3))*3+2*3mod4= (2+3*2)*3+2*3mod4= (2+6)*3+2*3mod4= 8*3+2*3mod4= 24+2*3mod4

Acum avem în aceeași expresie operatorii * și **mod**, care au prioritate egală, deci îi evaluăm de la stânga la dreapta:

24+2*3mod4= 24+6mod4= 24+2=26

2. Stabiliți valoarea de adevăr a următoarei expresii:

2*(3+140div3mod7)+12*7/3>10 OR 5+2*(7div2+17mod3div4)<=5 *Rezolvare*. Vom efectua mai întâi calculele matematice, deoarece operatorii relaționali **>** și **<=** și operatorul logic **OR** au prioritate mai mică:

2*(3+140div3mod7)+12*7/3>10 OR 5+2*(7div2+17mod3div4)<=5 2*(3+46mod7)+12*7/3>10 OR 5+2*(3+17mod3div4)<=5 2*(3+4)+12*7/3>10 OR 5+2*(3+2div4)<=5 2*7+12*7/3>10 OR 5+2*(3+0)<=5 14+12*7/3>10 OR 5+2*3<=5 14+84/3>10 OR 5+6<=5 14+28>10 OR 11<=5 42>10 OR 11<=5 TRUE OR FALSE TRUE

DO LEO

Deci expresia are valoarea TRUE.

1	•	
AD	icai	
- P		· · ·

- Evaluați următoarele expresii:
 a. 5 + 2 * (x + 4) / 3, unde x este o variabilă având valoarea 18.
 - b. 7/2*2+4*(5+7*3)>18
 - c. 2 <= x AND x <= 7 OR x > 19, unde x este o variabilă întreagă având valoarea 23.
 - d. 5 / 2 4 / 2
 - e. 50 div 10 * 5
 - f. 31250 / 5 / 5 * 2

2. Completați următorul tabel, ca în exempl

e1	e2	e3	e1 AND e2	e2 AND e3	e1 AND e2 OR e3	e1 OR e2 AND e3
true	true	true				
true	true	false				
true	false	true				
true	false	false				
false	true	true	false	true	true	true
false	true	false				
false	false	true				
false	false	false				

3. Care dintre următoarele expresii are valoarea **TRUE (adevărat)**, știind că variabilele întregi **x** și **y** au valorile **x = 17** și **y = 53**?

a. $x \le y$ b. $x \le y$ c. $x - y \ge 0$ d. $y \mod 5 = 4$ e. x + y f. $y \dim x = 3$

4. Știind că variabilele întregi **a**, **b** și **c** au inițial valorile **5**, **10** și respectiv **12**, ce valori vor avea în urma efectuării următoarelor atribuiri? $\mathbf{a} \leftarrow \mathbf{b} + \mathbf{c}$

b←c + a c←a + b

 5. Dacă valoarea inițială a variabilei x este 125, ce valoare va avea x în urma efectuării următoarelor atribuiri?
 a←x mod 10

 $x \leftarrow x \text{ div } 10$ $b \leftarrow x \mod 10$ $x \leftarrow x \text{ div } 10$ $x \leftarrow (x * 10 + a) * 10 + b$

6. Scrieți, în forma acceptată de calculator, următoarele expresii matematice:

100,100,100

a.
$$\frac{x+2y+6}{5}$$
 b. $\frac{2ab}{x+y} - 5x + 7$ c. $\frac{x-y+3xy}{2+\frac{x}{4y}}$ d. $\frac{2ab}{x^2}$

7. Considerăm două variabile întregi, a și b, având valorile 7 și 3. Evaluați expresia: (2 + 4 * b div 3 + a - 2 div a * 3 + b) div 2 + b - a
8. Să considerăm a, b, c trei variabile întregi având valorile 7, 3, 4. Evaluați expresia: a > b AND b <= 1 + c OR a mod 4 = 1
9. Scrieți expresiile care sunt adevărate dacă și numai dacă: a. x este număr par de trei cifre; b. x este număr impar de două cifre; c. x este mai mare ca 100 și este divizibil cu 6.
10. Care este rezultatul evaluării următoarei expresii?

- 10. Care este rezultatul evaluării următoarei expresii?11 * 3 div 2 * 2 div 3a. 2b. 10c. 2.75d. 11
- **11.** Care este valoarea expresiei: **9 div 2 * 2 5 ?** a. **3** b. **4** c. **–3** d. **–3.75**

12. Variabilele **x** și **y** sunt de tip întreg, **x** memorând valoarea **8**, iar **y** valoarea **6**. Care dintre expresiile de mai jos este falsă?

a. 3 * x - 4 * y = 0 b. (x + y) / 2 > x mod y + 1 c. NOT (x / 2 + 2 = y) d. x - y + 3 <> 0

13. Variabila întreagă **x** memorează un număr natural cu exact 4 cifre. Care dintre următoarele expresii are ca valoare numărul obținut după eliminarea cifrei sutelor numărului memorat de variabila **x**?

a. **x mod 10 + x div 10 + x div 1000;**

```
b. x mod 1000 * 100 + x div 100;
```

c. x mod 1000 + x mod 100 + x mod 10;

d. x div 1000 * 100 + x mod 100.

14. Care dintre următoarele expresii are valoarea **0**, dacă și numai dacă numărul memorat de variabila **x** nu este divizibil cu **3**?

a. x mod 3	c. (1 – x mod 3) * (2 – x mod 3)
b. (1 – x mod 3) + (2 – x mod 3)	d. 3 – x mod 3

15. Știind că variabila întreagă **n** memorează un număr natural cu cel puțin 3 cifre, care dintre următoarele expresii are ca valoare numărul obținut după eliminarea ultimelor 2 cifre ale lui **n**?

a. **n mod 10 div 10** b. **n mod 10** c. **n div 100** d. **n div 10 mod 10**

16. Care dintre expresiile următoare este e	echivalentă cu expresia NOT (a > b AND c ≤ d)?
a NOT (a>b) AND NOT (c≤d)	c. a≤b OR c <d< th=""></d<>
b. NOT (a≥b) OR NOT (c <d)< th=""><th>d. a<b and="" c≥d<="" th=""></th></d)<>	d. a <b and="" c≥d<="" th="">

17. Care dintre expresiile următoare este echivalentă cu expresia NOT (x<5 OR x≥20)?

a.	NOT ((x<5)	OR N	OT (x≥20)
b.	NOT	(x≥5)	AND	NOT	(x<20)

c. x≥5 OR x<20 d. x≥5 AND x<20

1.00LL

- 1. Care dintre următorii identificatori este corect?
 - a. val\$sum
 - b. exit flag
 - c. sum_nr
 - d. 3omultinelabani

2. Asociați operatorilor din **coloana A)** operațiile corespunzătoare din **coloana B**).

Coloana A)	Coloana B)	
A1) +	B1) Înmulțire	
A2) *	B2) Scădere	
A3) div	B3) Atribuire	
A4) -	B4) Negație logică	
A5) NOT	B5) Restul împărțirii	
A6) mod	B6) Adunare	
A7) /	B7) Câtul împărțirii	
A8) <	B8) Împărțire	

2 puncte

2 puncte

- 3. Evaluați următoarele expresii, știind că **a** și **b** sunt două variabile întregi cu valorile **a=7** și **b=9**: a. **a*4+b*(14*a div 3-2*b)**
 - b.(b+5*a) div 2>10 c. a div 5 * 5 d. b mod a + 5 e. (a>8) or (b<10)

100,100,100

1,25 puncte

4. Pentru fiecare dintre constantele aflate în coloana A) alegeți din coloana B) tipul său:

Coloana A)	Coloana B)		
A1) 5.0	B1) constantă șir de caractere		
A2) 5	B2) constantă caracter		
A3) '5'	B3) constantă reală		
A4) "5"	B4) constantă întreagă		

1 punct

5. Scrie un algoritm care citește două numere naturale **a,b** și afișează suma dintre cifrele zecilor numerelor **a** și **b**. De exemplu, pentru **a=2357** și **b=5123** suma este **2+5=7**. *1,75 puncte Se acordă 2 puncte din oficiu*.

STRUCTURA SECVEN-ȚIALĂ ȘI STRUCTURA ALTERNATIVĂ

Programarea structurată se bazează pe ideea că orice algoritm poate fi compus din numai trei structuri de control.

În această lecție vom prezenta doar prima dintre aceste structuri, urmând ca în lecțiile următoare să învățăm despre structura alternativă. Structurile repetitive vor fi studiate în clasa a VI-a.

Corrado Böhm s-a născut la 17 ianuarie 1923 și este profesor emerit al Universității "La Sapienza" din Roma, iar Giuseppe Jacopini a fost studentul acestuia. La începutul anilor '70, prelucrările cu ajutorul calculatorului au devenit tot mai dezvoltate, iar programele din ce în ce mai mari și mai complicate. Chiar și autorii acestor programe au început să aibă probleme în a le înțelege, depana și modifica ulterior.

Pentru a ieși din acea "*criză*" s-a impus ca programele să fie scrise sistematic, respectându-se anumite reguli, pentru a se obține niște programe mai clare. Astfel a apărut *programarea structurată*, care reprezintă un mod de concepere a programelor potrivit unor reguli bine stabilite, utilizându-se un set redus de *tipuri de structuri de control*.

La baza programării structurate stă **teorema lui Bohm și Jacopini,** conform căreia orice algoritm poate fi compus din numai trei structuri de control:

- Structura secvențială (liniară);
- Stuctura alternativă;
- Structura repetitivă cu trei variante:
 - Structura repetitivă cu test inițial;
 - Structura repetitivă cu test final;
 - Structura repetitivă cu număr cunoscut de pași (sau structura repetitivă cu contor).

Structura secvențială (liniară)

Structura liniară reprezintă un grup de operații care se execută în ordinea scrierii lor:

Dacă **S1, S2,..., Sn** sunt structuri, atunci

S1

S2

... Sn

este o structură liniară reprezentată în pseudocod, iar

S1; S2; ...; Sn

este o structură liniară reprezentată în pseudocod în care mai multe instrucțiuni sunt scrise pe aceeași linie.

DOLLO

1. Ce se va afișa în urma executării următorului algoritm, știind că de la tastatură se introduce valoarea **15749**?

citește x y←x mod 100 x←x div 1000 x←x*100+y *Rezolvare.* Urmărim cum se execută fiecare instrucțiune a algoritmului și cum se modifică valorile variabilelor folosind următorul tabel:

Instrucțiunea	Variabila x	Variabila y
citește x	15749	
y←x mod 100	15749	49
x ← x div 1000	15	49
x←x*100+y	1549 (=15*100+49)	49

Deci, la final, se va afișa valoarea 1549.

Putem utiliza un tabel mai simplificat fără a mai trece instrucțiunile și vom nota în fiecare coloană noua valoare a variabilei corespunzătoare, atunci când aceasta se modifică.

Variabila x	Variabila y
15749	49
15	
1549 (=15*100+49)	

2. Se citesc două numere reale **x** și **y**. Scrieți algoritmul care calculează media lor aritmetică:

Rezolvare. citește x, y m←(x+y)/2 scrie m

Aplicații

100,100,1

1. Știm câte minute și secunde s-a jucat ieri Maria la calculator, precum și câte minute și secunde s-a jucat astăzi. Scrieți un algoritm care va calcula cât s-a jucat în total în cele două zile.

2. Sala de clasă are formă dreptunghiulară. Scrieți un algoritm care va citi lungimile celor două laturi ale sălii de clasă și va afișa aria sa.

3. Scrieți un algoritm pentru rezolvarea următoarei probleme: "Tocmai ai fost la alimentară. Când ai plecat de acasă aveai în buzunar x lei. De la alimentară ai cumpărat y cornuri și z napolitane. Știi că un corn costă a lei, iar o napolitană b lei. Câți lei ar trebui să mai ai în buzunar când ajungi acasă?"

4. Scrieți un algoritm care determină și afișează toate numerele de trei cifre ce se pot forma folosind doar cifrele **c1** și **c2** citite de la tastatură.

În calculul mediei a trebuit să folosim paranteze. Dacă am fi scris $\mathbf{m} \leftarrow \mathbf{x} + \mathbf{y}/\mathbf{2}$ ar fi însemnat că doar pe \mathbf{y} îl împărțim la $\mathbf{2}$, deoarece operatorul / are prioritate mai mare decât operatorul +. Atribuirea $\mathbf{m} \leftarrow \mathbf{x}/\mathbf{2} + \mathbf{y}/\mathbf{2}$ este însă echivalentă cu atribuirea $\mathbf{m} \leftarrow (\mathbf{x} + \mathbf{y})/\mathbf{2}$

Doi algoritmi se numesc echivalenți dacă, pentru aceleași date de intrare, furnizează același rezultat. **5.** Se citește de la tastatură un număr cu exact 3 cifre. Afișați numărul obținut prin eliminarea cifrei din mijloc.

Exemplu. Dacă se citește numărul **157**, se va afișa numărul **17**.

6. Se citește de la tastatură un număr cu exact 3 cifre. Afișați numărul obținut prin interschimbarea cifrei zecilor cu cifra unităților.

Exemplu. Dacă se citește numărul **157**, se va afișa numărul **175**.

7. Se citește de la tastatură un număr cu maxim 4 cifre. Afișați suma cifrelor numărului. *Exemplu*. Dacă se citește numărul **391**, se va afișa numărul **13** (=3+9+1).

8. Se citește un număr cu exact 3 cifre. Afișați numărul obținut prin inversarea ordinii cifrelor. *Exemplu*. Dacă se citește numărul **821**, se va afișa numărul **128**.

9. Se citesc de la tastatură 5 numere. Calculați media lor aritmetică. Încercați să nu folosiți mai mult de două variabile în algoritm.

10. Trei prieteni au fost la cofetărie și vor să plătească în mod egal. Ei au de plătit **x** RON (**x** citit de la tastatură), însă vor să lase 15% comision chelnerului. Cât are de plătit fiecare?

11. Anul acesta este un an foarte secetos. Barajul de la Sadu mai are doar **x** metri cubi de apă ce pot fi livrați pentru consum. Știind că într-o săptămână locuitorii din Sibiu folosesc **y** metri cubi de apă, în câte săptămâni va fi golit barajul? Valorile **x** și **y** se vor citi de la tastatură.

100LLC

12. Bunica Mariei are o grădină având forma alăturată. Dându-se valorile **a, b** și **c,** calculați aria grădinii.

Structura alternativă (decizională)

Să începem lecția de astăzi cu un mic joc!

Împărțiți-vă în grupe de câte 5-6 jucători. Unul dintre jucători va coordona jocul. Ceilalți sunt rugați să scrie pe câte o coală de hârtie un număr de la 1 la 100. Coordonatorul jocului va pune o întrebare de tipul: "Este numărul vostru par?", "Numărul vostru este mai mare decât 20?", "Cifra unităților numărului vostru este 5?" etc. Fiecare jucător răspunde cu DA sau NU. Ficare jucător care a răspuns DA primește de la coordonator câte un punct; cei care au răspuns NU nu primesc puncte.

Se repetă jocul de 5 ori. Jucătorul cu cele mai multe puncte va fi desemnat câștigător. Dacă sunt mai mulți jucători cu același punctaj maxim, jocul se încheie cu remiză.

În acest joc tocmai s-a folosit cea mai simplă formă a instrucțiunii de decizie. Cum codificăm acest joc, într-o formă apropiată de limbajul calculatorului, știind că la începutul jocului punctajul are valoarea **0**?

dacă (numărul este par) atunci punctaj←punctaj+1 sfârșit dacă

Să ne imaginăm acum că repetăm jocul, dar de această dată, când un jucător spune DA primește un punct, iar când spune NU pierde un punct. Cum va arăta codul corespunzător jocului?

dacă (numărul este par) atunci
 punctaj←punctaj+1
 altfel
 punctaj←punctaj-1
 sfârșit dacă

Să analizăm acest cod, linie cu linie:

100,100,1

- *Linia 1*. Stabilește condiția în funcție de care programul va executa un set de instrucțini sau altul (în acest exemplu, condiția este ca numărul de pe coala de hârtie să fie par).
- *Linia 2*. Stabilește instrucțiunea/blocul de instrucțiuni care se execută în cazul în care condiția de pe linia 1 este adevărată.
- *Linia* 4. Stabilește instrucțiunea/blocul de instrucțiuni care se execută atunci când condiția de pe linia 1 este falsă (nu este adevărată).

1. Se știe că Ionel are **x** lei, iar Elena are **y** lei. Cine are mai mulți bani? (Ei nu au niciodată aceeași sumă de bani).

Rezolvare: Vom compara cele două numere **x** și **y**. Dacă **x** este mai mare, înseamnă că Ionel are mai mulți bani, altfel înseamnă că Elena are mai mulți bani.

VOM ÎNVĂȚA DESPRE...

În lecțiile anterioare am văzut cum poate un program să citească datele introduse de utilizator, cum poate afișa anumite rezultate, ba chiar am putut să facem calcule cu datele pe care le-am citit. În această lecție vom vedea cum putem controla ce să facă un program în anumite condiții.

condiție = o propoziție sau o expresie care este fie adevărată, fie falsă

instrucțiunea dacă = determină dacă o porțiune de cod este executată sau nu, în funcție de anumite condiții

remiză = joc la sfârșitul căruia niciun jucător nu câștigă.

bloc de instrucțiuni = una sau mai multe linii de cod grupate, care sunt tratate ca și cum ar fi o singură instrucțiune.

Date de intrare: **x** și **y** sunt datele care se vor citi de la tastatură. Date de ieșire: singurul rezultat de afișat este numele copilului care are mai mulți bani.

Date de intrare:

s = suma de bani ce o avem de plată

Date de ieșire:

s1 = suma de bani ce trebuie plătită după aplicarea reducerii

Scrie "Elena are mai mulți bani" sfârșit dacă

2. Un magazin a anunțat reduceri importante la sfârșit de sezon. Se va acorda o reducere de 20% dacă suma cheltuită la magazin este mai mare sau egală cu 20 lei, altfel, dacă suma cheltuită este mai mică de 20 lei, se va acorda o reducere de 10%. Care este suma finală ce trebuie plătită? *Rezolvare:*

> citește s dacă (s>=20) atunci s1←s-s*20/100 altfel s1←s-s*10/100 sfârșit dacă scrie s1

Condiții compuse

A. Condiții compuse cu ȘI

Condiția din cadrul unei instrucțiuni **dacă** poate fi compusă. Să analizăm următorul exemplu:

citește a dacă (a mod 2=0 ȘI a>10) atunci b ← 1 altfel b ← 2 sfârșit dacă scrie b

Vom lua mai multe valori pentru variabila **a** și vedem ce va afișa algoritmul:

valoarea lui a	a mod 2=0	a>10	a mod 2=0 SI a>10	se va tipări valoarea
28	Adevărat	Adevărat	Adevărat	1
6	Adevărat	Fals	Fals	2
15	Fals	Adevărat	Fals	2
3	Fals	Fals	Fals	2

DO LEO

Vă reamintim că o expresie de forma "**p ȘI q**" este adevărată doar atunci când atât **p** cât și **q** sunt adevărate.

B. Condiții compuse cu SAU

Să vedem acum ce se întâmplă atunci când avem o condiție compusă cu operatorul logic **SAU**.

citește x dacă (x='a' SAU x='A') b ← 1 altfel b ← 2 sfârșit dacă scrie b

Algoritmul de mai sus așteaptă ca utilizatorul să introducă un caracter. Dacă acesta introduce litera **A**, literă mare sau mică, programul va afișa valoarea **1**, dacă introduce orice altă literă sau caracter special, se va afișa valoarea **2**.

Structuri alternative compuse

Pe oricare dintre cele două ramuri ale unei instrucțiuni **dacă** putem pune o altă instrucțiune **dacă**, obținând astfel o structură compusă. Să luăm un exemplu:

```
citeşte x, y, z
dacă x>y atunci
dacă x>z atunci
m←x
altfel
m←z
sfârșit dacă
altfel
dacă y>z atunci
m←y
altfel
m←z
sfârșit dacă
scrie m
```

100.100.

Se observă că algoritmul a afișat cea mai mare dintre valorile celor trei variabile **x, y, z**:

x	у	Z	m	se afișează
1	2	3	3 (x>y fals, y>z fals)	3
2	5	3	5 (x>y fals, y>z true)	5
5	1	4	5 (x>y true, x>z true)	5
7	4	3	7 (x>y true, x>z true)	7

Vă reamintim că o expresie de forma "**p SAU q**" este adevărată atunci când cel puțin una dintre expresiile **p** și **q** sunt adevărate.

Scrierea indentată a algoritmilor nu este obligatorie. Puteți, dacă doriți, să scrieți tot algoritmul pe o singură linie. Este însă indicat să folosiți scrierea indentată, ca în exemplele din acest manual, pentru a face codul mai ușor de înțeles și de corectat.

Aplicații

1. Se consideră următorul algoritm:

x	у	Z	se afișează
1	2	3	
2	7	4	
7	3	4	
9	5	7	
5	7	4	
9	7	6	

Ce afișează de fapt algoritmul dat?

- 2. Se consideră următorul algoritm:
- citește x, y, z dacă y<x atunci t←x; x←y; y←t sfârșit dacă dacă z<x atunci t←x; x←z; z←t sfârșit dacă dacă z<y atunci t←y; y←z; y←t sfârșit dacă scrie x, y, z

100LDO

Completați tabelul cu valorile ce se vor afișa în urma executării algoritmului pentru datele de intrare precizate:

x	у	Z	se afișează
1	2	3	
2	7	4	
7	3	4	
9	5	7	
5	7	4	
9	7	6	

Ce afișează de fapt algoritmul dat?

3	. Se	consid	leră	următorul	a	lgoritm:
						0

citește n
dacă n=0 atunci
scrie 1
altfel
dacă n mod 2=1 atunci
scrie 2
altfel
scrie 3
sfârșit dacă
sfârșit dacă

Completați tabelul cu valorile ce se vor afișa în urma executării algoritmului, dacă pentru **n** se citesc valorile precizate în tabel:

n	se afișează
0	
1	
2	
3	
4	

4. Se consideră următorul algoritm:

100,100,7

citește a, b, c dacă (a+b) mod 2=1 atunci scrie "DA" altfel dacă (b+c) mod 2=1 atunci scrie "DA" altfel scrie "NU" sfârșit dacă sfârșit dacă

Completați tabelul cu valorile ce se vor afișa în urma executării algoritmului, dacă pentru **a**, **b** și **c** se citesc valorile precizate în tabel:

a	b	С	se afișează
2	3	4	
3	4	5	
2	6	4	
4	6	7	
3	5	7	

5. Se citește un număr natural. Afișați cel mai mic număr par mai mare decât numărul citit.

6. Se citește de la tastatură un număr cu exact 3 cifre. Afișați numărul obținut prin scrierea în ordine crescătoare a cifrelor numărului dat.

Exemplu. Dacă se citește numărul **281**, se va afișa numărul **128**.

7. Se citește de la tastatură un număr cu exact 3 cifre. Dacă numărul are toate cifrele distincte eliminați din număr cea mai mică dintre cifre, altfel numărul să rămână neschimbat. *Exemplu.* Dacă se citește numărul **28**1, se va afișa numărul **28**.

8. Scrieți un algoritm care citește nota ta la matematică și afișează calificativul pe care l-ai fi primit dacă erai încă în clasa a IV-a. Notele se echivalează astfel:

Nota 9 sau 10 = calificativul FB (foarte bine) Nota 7 sau 8 = calificativul B (bine) Nota 5 sau 6 = calificativul S (satisfăcător) Nota mai mică de 5 = calificativul I (insuficient)

9. Se citește de la tastatură un număr natural între 1 și 100. Afișați mesajul **AI CÂȘTIGAT** dacă numărul este între 56 și 78 (inclusiv). Altfel, să se afișeze mesajul **AI PIERDUT**.

10. Se citește de la tastatură data curentă și data de naștere a lui Mihai. Câți ani împliniți are Mihai?

Se citește de la tastatură un număr natural între 1 și
 Afișați ziua din săptămână corespunzătoare: luni pentru 1, marți pentru 2 etc.

12. Se citește de la tastatură o cifră de la 1 la 3. Afișați mesajul **Bună dimineața** în română dacă s-a introdus cifra **1**, în engleză (**Good morning**) dacă s-a introdus cifra **2** și respectiv în germană (**Gutten Morgen**) dacă s-a introdus cifra **3**.

INCOLLE

13. Pentru depășirea vitezei la volan se percepe amendă sau chiar se suspendă carnetul de conducere. Dacă viteza cu care circulă un șofer este între 61km/h și 80 km/h (inclusiv) va primi amendă, dacă viteza este mai mare decât 80 km/h se va suspenda carnetul, iar dacă viteza este mai mică sau egală cu 60 km/h, șoferul conduce corect și nu va fi sancționat. Citiți de la tastatură viteza cu care circulă un șofer și afișați mesajul **CORECT**, **AMENDĂ** sau **CARNET SUSPENDAT**, în funcție de ce viteză are.

14. Se citesc de la tastatură patru numere naturale. Afișați mesajul **DA** dacă cel puțin două dintre numere au aceeași cifră a unităților și respectiv **NU** în caz contrar.

Exemplu. Dacă se citesc numerele **218**, **13**, **57**, **81** se va afișa **NU**, iar dacă se citesc numerele **218**, **13**, **58**, **81** se va afișa **DA**.

15. Se citesc două numere cu exact două cifre. Afișați mesajul **DA** dacă cele două au cel puțin o cifră comună, respectiv mesajul **NU** în caz contrar.

Exemplu. Dacă se citesc numerele **27** și **76** se va afișa **DA**.

16. Se citesc 3 numere întregi de la tastatură. Afișați suma numerelor pozitive. *Exemplu*. Dacă se citesc numerele 27, -76, -21 se va afișa 27, iar dacă se citesc numerele -11, 15, 78 se va afișa 93.

17. Astăzi este ziua Ioanei. Citiți de la tastatură doar ultimele două cifre ale anului în care s-a născut. Afișați câți ani are Ioana.

Exemplu. Dacă se citește numărul **97** înseamnă că Ioana s-a născut în 1997, iar dacă acum suntem în anul 2018 înseamnă că Ioana are 21 de ani. Dacă se citește numărul **2** înseamnă că Ioana s-a născut în 2002, iar dacă acum suntem în anul 2018 înseamnă că Ioana are 16 de ani.

18. Presiunea în roțile din față ale unei mașini trebuie să fie la fel și, de asemenea, roțile din spate trebuie să aibă aceeași presiune, dar nu neapărat aceeași ca a roților din față. Se citește presiunea celor patru roți. Afișați mesajul **OK** sau **AVEȚI GRIJĂ**, după cum roțile sunt umflate corect sau nu.

Mini proiect

Ați jucat vreodată Mastermind? Dacă nu, vă invităm să o faceți. Este un joc de inteligență, simplu, care vă antrenează atenția, spiritul de observație și logica. Există variante online ale acestui joc. Jucați câteva partide înainte de a încerca rezolvarea acestui proiect.

Iată, pe scurt, regulile jocului:

Sunt disponibile 8 culori diferite. Primul jucător alege 4 culori diferite dintre acestea. Al doilea jucător trebuie să ghicească culorile selectate de primul jucător și ordinea exactă a lor. El are la dispoziție mai multe încercări. După fiecare încercare, primul jucător va afișa câte o bulină roșie pentru fiecare culoare ghicită în poziția corectă și respectiv câte o bulină albă pentru fiecare culoare ghicită corectă.

Dacă, de exemplu, primul jucător a ales, în această odine, culorile:

ROŞU VERDE ALBASTRU GALBEN

iar al doilea jucător a ales:

100,100,

GALBEN MARO ALBASTRU VERDE

atunci primul jucător va afișa o bulina roșie (a ghicit corect culoarea **ALBASTRU** pe a treia poziție) și două buline albe (pentru culorile **GALBEN** și **VERDE** ghicite pe poziții greșite).

Vă propunem acum ca, citind de la tastatură cele 4 culori alese de primul jucător și cele 4 culori alese de al doilea, să calculați câte buline albe și câte buline roșii va afișa primul jucător.

Elemente de interfață specifice mediului grafic interactiv

Ce este Scratch?

Scratch este un limbaj de programare grafic dezvoltat de Lifelong Kindergarten Group din cadrul MIT Media Lab, pe care îl putem folosi în mod gratuit. Se pot crea povești interactive, jocuri, animații, muzică, artă, prezentări și multe altele. Personajele pe care le folosim, pentru a realiza proiectele mai sus amintite, "prind viață" prin simpla tragere și așezare a unor blocuri colorate prin care le vom indica acțiunile pe care dorim să le execute.

VOCABULAR

desenăm personaje

anonim = folosire fără user (nume de utilizator) și fără parolă **cont** = este nevoie de nume de utilizator și parolă **coordonate** = perechea de numere **x** și **y** care indică poziția curentă a personajului pe scenă, **x** pe axa **0x** și **y** pe axa **0y** online = utilizare prin folosirea legăturii la Internet offline = utilizare fără conexiune la Internet platformă = suprafață de lucru care ne permite să programăm și să

Interfața Scratch

Scratch poate fi folosit în două moduri:

Online, accesând adresa https://scratch.mit.edu

• Offline, folosind o versiune instalată pe calculator.

Pentru a instala versiunea offline accesați opțiunea Editor Offline aflată în partea de jos a paginii amintite, https://scratch.mit.edu

Despre	Comunitate	Asistență	Informatii legale	Familia Scratch
Despre Scratch	Ghid comunitate	Pagină de Ajutor	Condiții de Utilizare	ScratchEd
Pentru parinti	Forumuri de discutii	Intrebări frecvente	Politica de confidentialitate	ScratchJr
Pentru profesori	Pagina de wiki Scratch	Editor Offline	DMCA	Scratch Day
Pentru dezvoltato	ri Statistici	Contacteaza-ne		Conferința Scratch
Credite		Donează		Fundamentele Scratch
Sarcini				
Apasă				

După instalarea versiunii offline, lansați aplicația. De la iconița care reprezintă un glob pământesc, selectați limba română pentru interfață.

Fie că accesăm lucrul online sau offline, interfața arată ca în imaginea de mai jos:

Atât *Bara cu unelte pentru personaje*, cât și *Bara cu unele pentru fundal* (decor), permit, prin accesarea butonului (pensulă), folosirea editorului grafic propriu. Același efect îl are și accesarea filei *Costume*, respectiv *Decoruri*, aflată în partea de sus a interfeței Scratch.

(X:0,Y:-180)

DOLLO

/	1 + X	1 4 X X 0				
	Scripturi	Costume Sunete		Scripturi	Decoruri	Sunete
	Mișcare Aspect	Evenimente Control		Mișcare	Eve	nimente

Numele filei (*Costume* sau *Decoruri*) depinde de selectarea personajului sau a decorului din partea stângă a interfeței. În oricare caz, editorul conține aceleași unelte.

Т

1

57

100,100

Editorul grafic se deschide în partea dreaptă a interfeței Scratch, în locul unde apare, după caz, **Zona de scripturi** sau **Zona pentru prelucrat sunete** etc.

Pensula – ne permite să desenăm liber. Se poate seta grosimea urmei pe care o lasă pensula și culoarea acestei urme

Linia – ne permite să desenăm segmente. Se poate seta grosimea și culoarea segmentului pe care îl desenăm

Dreptunghiul – ne permite să desenăm un dreptunghi. Dacă se ține apăsată tasta **SHIFT**, rezultatul va fi un pătrat. Se poate seta grosimea și culoarea liniei cu care realizăm desenul, precum și culoarea cu care umplem, dacă dorim, figura trasată

Elipsa – ne permite să desenăm o elipsă. Dacă se ține apăsată tasta **SHIFT**, rezultatul va fi un cerc. Se poate seta grosimea și culoarea liniei cu care realizăm desenul, precum și culoarea cu care umplem, dacă dorim, figura trasată

Text – ne permite să scriem texte folosind setările pe care le dorim în ceea ce privește fontul, culoarea, mărimea acestuia

Găleata – ne permite să umplem cu culoare o suprafață "închisă"

Radiera – ne permite să ștergem desen, fundaluri etc.

Selecția – ne permite selectarea unei zone pe care apoi o putem prelucra

Bagheta – ne permite să eliminăm decorul

Ştampila – ne permite să selectăm o porțiune din desen și să realizăm o copie a acestei porțiuni

În cazul în care în editorul grafic se află un personaj (costum), în partea dreaptă a ecranului apare o bară de unelte cu care putem modifica personajul (costumul).

Test de evaluare 1. Completați etichetele: **Windowski de la bilități ar înățimea este de __ unități. Completați următoarele enunțuri:** Lățimea Scenei este de __ unități, iar înățimea este de __ unități. Centrul Scenei are coordonatele ___. Coordonatele curente ale unui personaj sunt afișate în _____. Pornirea aplicației se face de la butonul în formă de _____. 3. Afirmația: "Rolul butonului în formă de aparat de fotografiat, aflat pe *Bara cu unelte pentru scenă*, are rolul de a efectua o fotografie pe care o putem folosi apoi ca fundal" este:

a. Adevărată b. Falsă

100,100,

Reprezentarea structurilor secvențiale

🗦 VOM ÎNVĂȚA DESPRE..

Vom începe în această lecție să dăm viață personajelor de pe scena Scratch. Vom scrie mici programe, numite *scripturi*, cu ajutorul cărora personajele se pot mișca, își pot schimba înfățișarea, pot scoate sunete, pot interacționa între ele, pot fi controlate de către utilizator, pot "vorbi" și chiar știu matematică. Scriptul este o secvență de program formată din niște dreptunghiuri numite blocuri, interconectate între ele. Ordinea acestor blocuri este foarte importantă, pentru că ele stabilesc derularea acțiunii din scenă: când intră personajele în scenă și cum interactionează între ele si cu fundalul.

ATENȚIE

Fiecare personaj va avea propriul său rol pe scenă, adică vom scrie câte un script (sau mai multe) pentru fiecare în parte. Așa că, înainte de a scrie un script, trebuie mai întâi să seletăm personajul corect.

Mișcarea personajelor

Când rulează un script, Scratch va executa fiecare bloc în parte începând din partea de sus și continuând în jos.

Ca să rulați un script apăsați pe stegulețul verde de deasupra scenei, iar ca să opriți rularea scriptului apăsati butonul rosu.

a ------

Pentru a așeza personajul în poziția dorită, vom folosi blocul **du-te la** din grupul **Mișcare**, precizând valorile dorite pentru cele două coordonate **x** și **y**.

Personajul poate fi mutat prin modificarea celor două coordonate, folosind blocurile **modifică x** și respectiv **modifică y**.

modifică x cu 30

modifică x cu -50

IGOLLE

Aceste blocuri adaugă valoarea indicată la coordonata respectivă. De exemplu, după rularea scriptului alăturat personajul se va afla la coordonatele **x=-30**, **y=110**.

În locul blocului **du-te la**, la care mutarea este instantanee (pesonajul sare în noua poziție), putem folosi blocul **glisează**, cu ajutorul căruia personajul "alunecă" la poziția indicată în timpul indicat.

Dacă adăugăm câte un bloc **așteaptă** după fiecare mutare, vom observa fiecare mutare în parte:

Rulați acum scriptul următor:

când se dă clic pe 🏴
ascunde
glisează în 0.5 secunde la x: 100 y: 100
glisează în 0.5 secunde la x: 100 y: -100
glisează în 0.5 secunde la x: -100 y: -100
glisează în 0.5 secunde la x: -100 y: 100
afișează

Hmmm?! Se comportă cam ciudat, nu-i așa?

afișează

Oare ce fac cele două blocuri pe care le-am adăugat, **ascunde** și **afișează**?

ascunde

creionul sus

În timpul deplasării putem spune personajului să deseneze o "urmă" folosind blocurile **creionul sus** și respectiv **creionul jos**. Culoarea "urmei" o specificăm cu ajutorul blocului **setează culoarea creionului la**.

Pentru a spune unui personaj să se deplaseze într-o anumită direcție față de poziția curentă, se folosește blocul **orientează-te în direcția**. Se poate alege una dintre cele 4 direcții predefinite sau putem introduce o valoare la alegere.

Direcțiile sunt măsurate în grade, ca în figura alăturată, și puteți indica orice valoare de la -179° la 180° .

Odată stabilită direcția în care se va deplasa personajul, folosim blocul **înaintează ... pași** prin care spunem personajului distanța pe care să o parcurgă în direcția stabilită.

100,100,

creionul jos

- să rămâneți mereu curioși și creativi! Este ceea ce vă propunem prin această aplicație.
 - 1. Începeți un nou proiect.
 - 2. Ștergeți de pe scenă pisica ce apare implicit.
 - Adăugați pe scenă personajul Avery Walking. Dați clic pe butonul Personaj nou, aflat sub scenă.
 - 4. Schimbați fundalul scenei. Dați clic pe butonul **Decor nou**, aflat sub scenă. Selectați apoi un nou fundal. Vom schimba aceste două fundaluri între ele cu ajutorul scriptului.
 - Încercați să creați o mică animație care face ca personajul să meargă pe scenă.

Indicație. Veți folosi bocurile **glisează**, **așteptă** și veți schimba costumul personajului folosind blocul **treci la costumul**.

treci la costumul avery walking-d

DOLL

Stilurile de rotație ale personajului așteaptă ① sec orientează-te în direcția -90▼ înaintează 100 pași

Ce ați observat? Cum va fi orientat personajul după fiecare rulare?

Mini proiect

Veți începe acum să lucrați la un mic proiect pe care îl veți putea modifica în lecțiile următoare.

- 1. Creați un nou proiect.
- 2. Ștergeți de pe scenă personajul implicit.
- **3.** Desenați, ca fundal pentru scenă, un labirint simplu, asemănător cu cel alăturat, sau unul la alegere.

4. Creați două personaje noi, care să fie, de fapt, textele "START" și "STOP". Plasați cele două "personaje" ca mai jos:

100,100,

- 5. Plasați pe scenă un nou personaj sub forma unei mingi.
- 6. Redimensionați acest personaj astfel încât să fie mai mic decât un culoar al labirintului.
- 7. Scrieți acum un script pentru pesonajul minge, pentru a-l deplasa corect de la START la STOP.

Când am discutat despre algoritmi, am văzut că ei utilizează variabile. Oare în Scratch putem declara și utiliza variabile? Desigur!

concatenare = înșiruire, alipire a diverselor elemente.

Reprezentarea structurilor secvențiale — continuare —

Variabile și operatori

Ca în orice limbaj de programare, putem utiliza și aici variabile, le putem inițializa, putem efectua calcule cu ele, le putem compara etc.

oBS OBSERVAȚIE:

Pentru a lucra cu *date* (așa se numesc în Scratch variabilele) folosim grupul de blocuri **Date**, iar operațiile pe care le putem efectua cu acestea le alegem din grupul de blocuri **Operatori**.

Să vedem, pe scurt, care sunt blocurile pe care le putem folosi pentru a lucra cu variabile:

🖖 Creează o nouă variabilă.

Aceasta este "vizibilă" pentru orice personaj sau doar pentru personajul în al cărui script l-am declarat. În caseta de text introduceti numele variabilei!

BS OBSERVATIE:

Deși Scratch este mai permisiv decât alte limbaje de programare și ne permite să denumim variabilele cum dorim, este bine să respectăm regulile pe care le-am învățat la lecția despre descrierea algoritmilor.

🏷 🛛 Atribuie o valoare variabilei specificate.

De exemplu, blocul alăturat este echivalent cu instrucțiunea pseudocod: $y \leftarrow 5$

🏷 🛛 Adună o valoare la variabila specificată.

Blocul alăturat este echivalent cu instrucțiunea pseudocod: $y \leftarrow y+15$

Series Afișează, respectiv, ascunde variabila specificată. Variabilele vizibile sunt afișate pe scenă în colțul stânga sus.

Jieeaza o Variabila			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	Varial	bilă Nouă	
Denumirea variab	oilei:		
Pentru toate pers	sonajele	🔿 Doar pe	entru acest personaj
	OK	Depuntă	

Operatorii pe care îi putem folosi în calcule îi găsim, după cum am precizat, în grupul **Operatori**. Aceste blocuri nu pot fi folosite singure. Ele vor fi incluse în alte blocuri, cum se va vedea în exemplele ce vor urma.

Operatorii din Scratch sunt:

• *Operatorii aritmetici* de adunare, scădere, înmulțire și împărțire.

• Operatorii de comparație.

După cum vedeți, nu avem operatori pentru comparații de genul "mai mare sau egal", dar vom putea face astfel de comparații folosind doi operatori de comparație și operatorul logic **sau**.

• *Restul împărțirii* celor două numere

• *Rotunjește numărul* precizat la cel mai apropiat întreg. De exemplu **rounjește(3.5)** are valoarea 4, iar **rounjește(3.4)** are valoarea 3.

• *Operatorii logici*, care au exact aceeași semnificație ca cei din pseudocod.

EXERCIȚII REZOLVATE:		
setează 🗙 🔻 la 7	Secvența pseudocod echivalentă	Valorile finale ale variabilelor și observații
setează y 🔻 la 🙎	x ←7	x=7
setează suma 🔻 la 🗙 + y	y←20 suma←x+y	y=20 suma=27

Secvența pseudocod echivalentă	Valorile finale ale variabilelor și observații
x←3	x= 3
y ← 20	y=20
z←15	z=15
suma←x+y*z	suma=303

(blocul de înmulțire este inclus în blocul de adunare, deci vom efectua mai întâi înmulțirea)

100.100.

setează 🔽 la	<mark>x rest 2</mark> = 0 sau	v rest 2) = 0

Secvența pseudocod echivalentă	Valorile finale ale variabilelor și observații
x←5	x←5
y←8	y←8
z←(x mod 2=0) or (y mod 2=0)	z←adevărat

z va avea valoarea adevărat dacă cel puțin una dintre variabilele x și y sunt pare, respectiv fals în caz contrar

5.

setează x v la 5 setează y v la 8 setează z v la x rest 2 = 0 și y rest 2 = 0

Secvența pseudocod echivalentă	Valorile finale ale variabilelor și observații
x←5	x←5
y ← 8	y←8
$z \leftarrow (x \mod 2=0) \text{ and } (y \mod 2=0)$	z←fals

z va avea valoarea adevărat dacă atât variabila x cât și variabila y sunt pare, respectiv fals în caz contrar

1 00 L DO

Citirea și afișarea

Știați că personajele din Scratch știu să vorbească? Cum? E foarte simplu, folosind blocurile **spune** și **gîndește**. Diferența dintre cele două este forma norișorului în care apare mesajul.

Atunci când se specifică un număr de secunde, înseamnă că textul se va afișa doar atâta timp cât am precizat, după care dispare. În cazul simplu, fără timp specificat, textul rămâne permanent afișat sau până când afișăm un nou text.

Pentru citirea datelor de la utilizator folosim blocul **întreabă**, care pune o întrebare și apoi așteaptă ca utilizatorul să introducă răspunsul. Acest răspuns va fi memorat într-o variabilă specială (pe care nu o putem modifica) **răspuns**.

Scriptul alăturat cere utilizatorului să introducă două numere și calculează suma lor.

Observați utilizarea blocului care concatenează două texte sau, în exemplul nostru, un text cu valoarea unei variabile, pentru a putea fi afișate simultan.

când se dă clic pe 🏓
întreabă Dati primul numar : și așteaptă
setează 🗙 🔻 la 🔽 răspuns
întreabă Dati al doilea numar : și așteaptă
setează y 🔻 la 🔽 răspuns
setează suma 🔻 la 🗙 + y
spune alătură Suma este suma

când se dă clic pe setează × • la 5

setează y 🔻 la 10

setează z 🔻 la 16

setează rez 🔻 la

setează rez

setează rez

setează rez 🔻 la

Aplicații

1. Pentru a face un personaj să aștepte câteva secunde, folosiți blocul **așteaptă** care se găsește în grupul de blocuri: a. **Control** b. **Aspect** c. **Mișcare** d. **Operatori**

2. Fundalul scenei poate fi schimbat folosind un bloc din grupul:

a. Control b. Aspect c. Mișcare d. Operatori

100,100

3. Ce valoare va avea variabila **rez** după fiecare atribuire din scriptul alăturat? Rezolvați exercițiul fără ajutorul calculatorului și, după ce ați terminat, adăugați după fiecare atribuire un bloc **spune** pentru a verifica răspunsurile voastre.

4. Aflați valorile variabilelor **x**, **y**, **z** după rularea următoarelor scripturi:

când se dă clic pe 🏴	când se dă clic pe 🏓	când se dă clic pe 🏓
setează 🗵 🛛 la 🛛 7 🛚 3	setează 🗵 🛛 la 🚺 - 3	setează 🗙 🛪 la 1
setează y 🔻 la 🔞 / 2	setează y 🔻 la 🗙	setează y 🔻 la 9
setează z v I x + y	setează z 🔻 la 🗙 🗶 y	setează z v la x v / 5

5. Scrieți un script care cere utilizatorului să introducă trei numere și calculează media lor.

Reprezentarea structurilor alternative prin blocuri grafice

În lecțiile anterioare am făcut personajele să se miște, să vorbească și chiar să facă socoteli. Dar, totuși, ar fi cam multă plictiseală pe scenă dacă, de fiecare dată când rulăm un script, personajul ar face exact același lucru.

Ne propunem acum să facem personajele să ia anumite decizii, să reacționeze diferit în condiții diferite, să reacționeze la anumite evenimente și așa mai departe.

De exemplu, dacă pisica atinge un obstacol în timpul deplasării — să scoată un sunet sau dacă utilizatorul a răspuns corect la o întrebare a personajului — să îl felicităm, iar dacă nu, să-i dăm un indiciu.

În pseudocod am folosit instrucțiunea **dacă**. În Scratch avem la dispoziție două blocuri pentru implementarea acestei structuri:

spune Bravo! Foarte bine!

IDOLLOOI

Scriptul următor citește cele două note ale unui elev la o materie, apoi calculeaza media și o afișează. Dacă media este sub 5, va afișa un avertisment.

Se observă că am folosit blocul **dacă ... atunci** pentru a verifica dacă media este mai mică decât 5.

Haideți să modificăm acest script astfel încât să felicităm utilizatorul dacă media lui este mai mare sau egală cu 8.

Pentru aceasta, înlocuim blocul **dacă ... atunci** cu blocul **dacă ... atunci ... altfel**.

Testați singuri!

Cum testăm dacă un script este corect? Trebuie să ne asigurăm că funcționează corect pentru toate cazurile posibile. În această situatie, avem trei cazuri:

- media este sub 5 (de exemplu, cele două note sunt 3 și 4);
- media este peste 8 (de exemplu, cele două note sunt 8 și 10);
- media este între 5 și 8 (de exemplu, cele două note sunt 4 și 10, deci media este 7).

Rulează scriptul pentru cele trei situatii. A afisat corect mesajele pe care ne asteptăm să le afiseze?

Iată un alt exemplu: adăugați p personajul "Dog Puppy" și int scriptul alăturat. Oare ce face aces Încercați singuri să aflați!

Adăugați acum pe scenă și o m în imaginea de mai jos și adăugați d următorul script:

e scenă	
roduceți	când se dă clic pe 🦰
t script?	întreabă Vrei sa te joci cu mine? și așteaptă
inge, ca	dacă răspuns = da atunci
cățelului	spune Super!!!
	cântă sunetul dog2 🔻 și așteaptă să se termine
۲	Am folosit blocul atinge din grupul Detecție .
	atinge cursorul mouse-ului 🔻 ?
	cursorul mouse-ului
să se tern	aine Ball
	Ball-Soccer

Până acum, toate scripturile pe care le-am scris se executau atunci când apăsam steguletul verde din partea dreapta sus a scenei. Însă putem scrie scripturi cu ajutorul cărora personajul să reacționeze la diferite evenimente, ca de exemplu:

- la apăsarea unei taste;
- când dăm clic pe personai:

100,100,

• când se schimbă decorul.

când se dă dic pe acest personaj când se trece la fundalul decor1

Haideți să vedem cum putem deplasa personajul după cum apăsăm noi pe tastele săgeată.

Vom avea patru scripturi, câte un script pentru fiecare dintre cele 4 directii:

când tasta spațiu 🔻 este apăsată

În acest fel personajele noastre încep să fie "vii", să reacționeze la mediu. Aceste blocuri pot fi privite ca un caz special de blocuri de decizie, adică, dacă apăsăm tasta **săgeată sus** personajul se va muta în sus, dacă apăsăm **săgeată dreapta** personajul se va deplasa spre dreapta și așa mai departe.

Același lucru îl vom putea face în clasa a VI-a folosind instrucțiunile repetitive.

Test de evaluare **1.** În ce grup se găsește blocul **atinge...**? a. Control b. Evenimente c. Detectie d. Miscare 2. Ce se va afișa în urma rulării scriptului alăturat, dacă valorile celor trei date sunt: 15 a. a=20, b=30, c=5 15 b. a=-20, b=10, c=30 c. a=20, b=5, c=16 d. a=20, b=30, c=16 spune Unu pentru 2 secunde 3. Scrieți un script care cere utilizatorului să introducă 3 numere și apoi numără câte dintre ele sunt mai spune **Doi** pentru **2** secunde mari ca 10. altfe 4. Scrieți un script care cere utilizatorului să introducă spune Trei pentru 2 secunde temperatura atmosferică. Dacă temperatura este mai mică decât 15, personajul va spune E rece; dacă temperatura e mai mare ca 30, personajul va spune E altfe prea cald; în rest va spune Excelent. spune Patru pentru 2 secunde

Mini proiect

Reluați proiectul labirint de la lecția "Reprezentarea structurilor secvențiale" (vezi pag. 85). Puteți modifica scriptul scris, asfel încât utilizatorul să poată ghida mingea prin labirint folosind tastele săgeți?

Mini proiect

Creați o mică adaptare pentru Scratch a unei povești îndrăgite de voi. Personajele le puteți desena singuri folosind Paint-ul sau editorul grafic din Scratch. Puteți folosi diverse decoruri pentru povestea voastră, pe care le veți schimba pe parcursul poveștii. Pentru a coordona acțiunile personajelor puteți folosi blocul **așteaptă** sau puteți folosi blocul **când primesc...** aflat în grupul de comenzi **Control**. Urmăriți ca exemplu de utilizare a acestui bloc următorul proiect: *https://scratch.mit.edu/ projects/163539217/*

1 OOLLO

Mini proiect

- 1. Creați un nou proiect.
- 2. Ștergeți personajul implicit de pe scenă.
- **3.** Folosind editorul grafic din Scratch creați 3 noi "personaje" corespunzând figurilor geometrice *triunghi, pătrat* și *dreptunghi.*
- 4. Plasați cele 3 "personaje" pe scenă.
- **5.** Adăugați câte un nou costum pentru fiecare dintre cele trei figuri. Veți alege un om sau un animal din biblioteca Scratch.
- **6.** La apăsarea fiecărui personaj ascundeți cele trei personaje de pe scenă. Avem de realizat următoarele acțiuni:
 - Memorăm mai întâi coordonatele actuale ale obiectului, ca să putem reveni în aceeași poziție la final. Pentru aceasta folosim două variabile în care vom memora coordonatele folosind blocurile **coordonata x** și respectiv **coordonata y**, din grupul **Mișcare**.
 - Schimbăm costumul personajului ales la punctul 5.
 - Citim laturile necesare calculului perimetrului figurii alese (cele 3 laturi la triunghi, o latură pentru pătrat și două laturi pentru dreptunghi).
 - Calculăm perimetrul figurii și o afișăm.
 - Revenim la primul costum al personajului și mutăm personajul în poziția sa inițială.

Mini proiect

100,100,

Vă amintiți jocul Mastermind pe care vi l-am propus într-un proiect la lecția "Structura alternativă (decizională)"? Acum vă propunem să încercați să implementați în Scratch algoritmul pe care l-ați scris acolo (vezi pagina 75). Puteți înlocui, dacă vi se pare mai ușor, culorile cu numere naturale cuprinse între 1 și 8. Culorile alese de primul jucător le puteți genera aleator cu blocul **alege un număr aleatoriu** din grupul **Operatori**.

coordonata

coordonata

Indicații și răspunsuri

Pag 11. Aplicații. Picioarele nu stau sprijinite pe podea (înălțimea scaunului nu este adaptată); coloana nu este sprijinită corect pe scaun; brațele nu sunt sprijinite, stau suspendate; monitorul este prea sus; etc

Pag 19. Aplicații. 1. Orizontal: 2 - NEWMANN; 4 – MODIFICA; 5 – DPI; 7 – CACHE. Vertical:
1 – PERIFERIC; 3 – SOFTWARE; 5 – DPE; 6 – UCP. 2. UAL – Unitatea aritmetico-logică; Software –
Programele de pe calculator; UCP – Unitatea centrală de prelucrare; UCC – Unitatea de comandă și control; HDD – Drivere hard disk; Hardware – Aparatele electronice atașate unui calculator, care-l ajută să funcționeze; DPE – Dispozitive periferice de ieșire; DPI – Dispozitive periferice de intrare.
4. Datele prelucrate ajung la utilizator prin intermediul dispozitivelor periferice de ieșire. Introducerea datelor se realizează cu ajutorul dispozitivelor periferice de intrare. Mașina von Neumann are trei componente de bază: dispozitivele de intrare/ieșire, unitatea centrală de prelucrare, memoria.

Pag. 29-31. Aplicații. II. a. 1 byte = 8 biți; 5 GB = 5 x 1024 x 1024 KB = 5242880 KB. b. 1.2 MB = 1.2 x 1024 KB = 1228,8 Kb. c. 1.2 MB = 1258291,2 B. d. 2 TB = 2 x 1024 GB = 2 x 1024 x 1024 MB = 2097152 MB. III. *Orizontal*: 1 – WINDOWS; 6 – BYTE; 7 – REZOLUȚIE; 8 – LCD; 9 – PLOTTER; 10 – DRIVER. *Vertical*: 2 – IMPRIMANTA; 3 – INTEL; 4 – HARDWARE; 5 – MODEM.

IV. 1-d; 2-g; 3-a; 4-f; 5-c; 6-e; 7-h; 8-b. **V.** Cuvintele din careu sunt: BOXE (S,3,2); CDROM (S,2,1); DISC (E,7,8); HARD (E,2,2); IMPRIMANTA (E,8,1); JOYSTICK (E, 5,4); MICROFON (E,6,3); MONITOR (E,3,5); MOUSE (E,2,6); PLOTTER (E,7,1); PROCESOR (E,1,1); RAM (S,2,4); ROUTER (S,1,12); SCANER (E,4,5). În paranteză este indicată direcția (Sud, Est) și poziția de început a cuvântului (linia, coloana). **VI.** 1. scanner; 2. procesor; 3. memoria RAM; 4. placă grafică; 5. sursă; 6. unitate de disc optic; 7. hard disk; 8. placă de bază; 9. boxe; 10. monitor; 11. software-ul de sistem; 12. aplicație software; 13. tastatură; 14. mouse; 15. hard disk extern; 16. imprimantă. **VII.** LCD liquid crystal display; HD hard disk; CD-RW compact disc re-writable; GB giga byte; SO sistem de operare; RAM random access memory; ROM read only memory; DVD digital versatile disc; PC personal computer; UCP unitate centrală de prelucrare; USB Universal Serial Bus.

Pag. 33. Test evaluare. 1. c. 2. c. 3. a. 4. b. 5. b. 6. c.

Pag. 36. Aplicații. II. 1. meniu; 2. pictogramă; 3. android; 4. PARC.

Pag. 37. Test evaluare. 1. a. 2. a. 3. d. 4. c. 5. d. 6. b. 7. b. 8. d.

Pag. 39. Aplicații. 1. Paint; 2. txt

Pag. 41. Test de evaluare. 1. b. **2.** extensii. **3.** b. **4.** a. **5.** c. **6.** aplicație pentru gestionarea fișierelor și a folderelor de pe calculator. **7**. se selectează fișierul; executăm clic dreapta pe fișier; selectăm opțiunea; ne poziționăm în locul în care dorim să realizăm respectiva copie; executăm clic dreapta; selectăm opțiunea Paste.

Pag. 46. Aplicații. 1. gigel – numele cutiei poștale; yahoo – numele organizației care deține serverul de e-mail; com – tipul de domeniu. **2.** NU – încălcarea copyright-ului. **3.** d. **4.** c. **5.** adresă.

. LOOLDOLL

Pag. 46-49. Test evaluare. 1. b. **2.** b. **3.** b. **4.** a. **5.** a. **6.** b. **7.** b. **8.** a. **9.** b. **10.** a. **11.** a. **12.** c. **13.** d. **14.** adresă, telefon, CNP, școală, poze, nume. **15.** d. **16.** e. **17.** a. **18.** spam. **19.** a. **20.** 1-f; 2-i; 3-a; 4-h; 5-b; 6-g; 7-d; 8-e; 9-c.

Pag. 54. Aplicații. 1. b. **2.** Color 1. **3.** toate variantele sunt corecte. **4.** creionul – desenare; găleata – umplere cu culoare a unei zone închise; A – introducerea de text; guma – ștergere; pipeta – preia culoarea zonei în care se execută clic; lupa – zoom (mărirea desenului).

e1	е2	e3	e1 AND e2	e2 AND e3	e1 AND e2 OR e3	e1 OR e2 AND e3
true	true	true	true	true	true	true
true	true	false	true	false	true	true
true	false	true	false	false	true	true
true	false	false	false	false	false	true
false	true	true	false	true	true	true
false	true	false	false	false	false	false
false	false	true	false	false	true	false
false	false	false	false	false	false	false

Pag. 63-64. Aplicații. 1. a. 19,66; b. true; c. true; d. 0,5; e. 25; f. 2500.

3. a, b, f. **4.** a = 22, b = 34, c = 56. **5.** 152. **6.** a. (x + 2 * y + 6)/5; b. 2 * a * b/(x + y) - 5 * x + 7; c. (x - y + 3 * x * y) / (2 + x / (4 * y)); d. 2 * a * b / (x * x). **7.** 4. **8.** True. **9.** a. x mod 2 = 0 and x > 99 and x < 1000; b. x mod 2 = 1 and x > 9 and x < 100; c. x > 100 and x mod 6 = 0. **10.** b. 10. **11.** a. **12.** c. **13.** d. **14.** c. **15.** c. **16.** c. **17.** b.

Pag. 65. Test evaluare. 1. c. **2.** A1-B6; A2-B1; A3-B7; A4-B2; A5-B4; A6-B5; A7-B8; A8-B3. **3.** a. 154; b. true; c. 5; d. 7; e. true. **4.** A1-B3; A2-B4; A3-B2; A4-B1.

5. citește a,b

9

c**←**(a+b) div 10 mod 10 scrie c

Pag. 72-73. Aplicații

I. 1.

х	у	Ζ	Se afișează	
1	2	3	1	
2	7	4	2	
7	3	4	3	
9	5	7	5	
5	7	4	4	
9	7	6	6	

100,100,1

Algoritmul afișează cea mai mică valoare dintre valorile celor trei variabile x, y, z.

2.				
ç	x	у	Ζ	Se afișează
	1	2	3	123
	2	7	4	247
-	7	3	4	347
(Э	5	7	579
l	5	7	4	457
(9	7	6	679

Algoritmul afișează valorile celor trei variabile în ordine crescătoare.

3.

п	Se afișează
0	1
1	2
2	3
3	2
4	3
10	3
15	2

4.

а	Ь	С	Se afișează
2	3	4	DA
3	4	5	DA
2	6	4	NU
4	6	7	DA
3	5	7	NU

Pag. 84. Aplicații. 1. un romb. 2. un triunghi

Pag. 89. Aplicații. 1. a. **2.** b. **3.** true, true, true, false. **4.** a) x = 21, y = 4, z = 25; b) x = 12, y = 12,144; c) x = 11, y = 9, z = 19.8

100LLOOL

Pag. 92. Aplicații. 1. c. 2. a. Doi; b. Patru; c. Trei; d. Unu.

www.pasaport-cultura.ro, secțiunea RESURSE GRATUITE

